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Abstract

As demand rises for real-time, intelligent vision applications from smart 
factories to autonomous drones the need to deploy AI (and its subset ML) at the 
edge has never been greater.

However, many software development teams face a steep learning curve when translating powerful 
AI models into responsive, power-efficient edge solutions. The challenges lie not only in model 
optimisation but also in navigating fragmented hardware ecosystems, achieving tight performance 
goals and ensuring scalability from prototype to production.

This white paper addresses the core pain points software engineers encounter when bringing 
vision-based AI to edge systems. Many of these pain points are as a result of the selected underlying 
hardware, and we explore in detail the strengths and weaknesses of the software stacks depending 
on which hardware is selected.

We also explore how adopting vision and AI-ready pre-validated platforms can dramatically 
accelerate time-to-market, simplify development and de-risk deployment, citing Innodisk’s 
APEX-X100 platform by way of example.
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The shift from cloud-centric artificial intelligence (AI) to the edge in vision-based 
systems has numerous benefits, including fast (up to real-time) decision making 
and enhanced privacy.

As for applications, there are many. For example, AI-enabled vision-based systems are appearing in 
industrial automation and manufacturing, automotive and transportation, retail and smart stores, 
agriculture, security and surveillance, aerospace and drones, and smart cities and homes.

For software engineers developing AI-enabled functionality the move to the edge introduces a 
number of significant technical challenges. For instance, unlike cloud-based systems with virtually 
unlimited resources, edge environments are heterogeneous, resource-constrained and often 
difficult to scale. Also, there is the familiar backdrop of commercial pressure to be early (and ideally 
first) to market with a high performance, reliable solution that serves a market need. Regulatory 
compliance is almost always required too.

Most of the technical challenges software engineers face have their roots in hardware: and we 
cannot stress this enough. For instance, depending on key performance requirements, vision-
based AI at the edge apps can run on a variety of hardware device types, each with their own 
strength and weakness. 

Devices with limited processing power and memory makes running deep learning models (such as 
convolutional neural networks, CNNs) difficult without model optimisation, a task that falls squarely 
with the project’s software engineers.

Many edge environments vary significantly, particularly those outdoors (e.g. variable / poor lighting), 
there may also be motion-blur and, if the camera is on a moving platform, such as an autonomous 
guided robot (AGR), angles will be changing all the time. The upshot: models trained in the lab may 
underperform in the real world and, again, it is for the software engineer to find optimal solutions.

Another challenge is often data fusion, as some vision-based AI applications must work with 
multiple vision/sensing techniques (see figure 1). GPS may also be required, all of which means 
keeping a very tight control over time synchronisation. 

Figure 1. Image fusion (such as layering the images produced by visible light and thermal cameras) has been popular in 
industry for several years. AI/ML’s role is to make sense of the data for automated predictive maintenance purposes, for 
example, and to perform object recognition (including the movement of personnel).
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Also, while the underlying hardware may provide some security features, the edge device might 
operate in a location where it is susceptible to tampering, data breaches and model theft. 

Lastly, as the raison d’etre of edge processing is to have little if any reliance on the cloud, how 
easy is it to test, debug and upgrade (or if necessary, rollback) products in the field? Unless post-
deployment considerations are factored in at the design stage, the edge device might have a very 
short life in the field.

Return to Index ^^
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As readers will be aware, there is a logical flow (see Figure 2) taken by software 
engineers once the hardware has been selected: and we must stress that it is 
important for the software team to be involved in that selection.

Figure 2: Developing a vision-based AI at the edge product requires following 
a flow, noting that parts are iterative and steps back may need to be taken.
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The Flow

1 2 3 4 5 6 7 8

Requirements 
Definition

Quantisation and 
Optimisation

Reiterate 
and Refine

Model 
Training

Choose or Build a 
Suitable Model 

Architecture

Evaluate the Model 
on Edge Hardware

Package 
and Deploy

Weight and 
Structure Pruning

1. Requirements Definition

2. Choose or Build a Suitable Model Architecture

3. Model Training

Identify the tasks (e.g., object detection and classification), specify constraints (e.g., latency, power, 
memory and accuracy) and understand the strengths and weakness of the hardware. It is also 
essential that post-deployment considerations be included at this stage.

If selecting, there are several open-source ones to choose from including YOLOv8-Nano (part of 
the YOLOv8 model family developed by Ultralytics, and with code and models publicly available 
on GitHub) for detection. And for classification, an example model architecture is MobileNetV2, 
developed by Google as part of its TensorFlow ecosystem.

High quality datasets should be used that represent the deployment environment and the data 
should be augmented to train for conditions such as low-light and motion blur. Tip: to fast track the 
development of your application use transfer learning, if possible - i.e., take a model trained on one 
task and modify it to perform a different but related task.

4. Weight and Structure Pruning

Set low-importance weights to zero and remove any unnecessary filters and neurons. These pruning 
exercises will reduce model size/complexity and simplify computation tasks. However, be mindful 
that pruning comes at the cost of system accuracy.

*Tip* 
Model selection should involve a review of licensing terms. For example, while a General Public License (GPL) is 
common for most models, sometimes a GNU Affero GPL (AGPL) might be required. It is an extension to a standard GPL 
and ensures that the source code of any modified software to be used over a network can be made available to users 
interacting with it remotely. This means that if you modify your AGPL-licensed code (model) and run it as a service, 
users of your service are entitled to receive the source code.
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6. Evaluate the Model on Edge Hardware

7. Reiterate and Refine

8. Package and Deploy

5. Quantisation and Optimisation

Test for inference latency, memory usage, power consumption and accuracy versus the original 
model. Note: many vendor SDKs (e.g., NVIDIA Nsight, Intel VTune, Android Profiler) include useful 
profiling tools.

If too much accuracy is lost or latency is too high, steps 3 to 6 should be repeated. Accuracy 
improvement measures include adjusting pruning/quantisation parameters or using QAT (if not 
used in the first pass). Or even start with a better base model. Latency can be shortened through 
further pruning and quantising. Again, it’s a balancing act between accuracy and speed.

As a minimum this involves bundling together the optimised model with the edge software stack. 
Also, if the ability to update in the field is a requirement (which probably will), over the air (OTA) 
updates must be enabled.

As mentioned, post-deployment considerations must be included as a part of the requirements 
definition. These considerations include:

	o Edge systems must maintain reliable performance under varying environmental and network 

conditions. In addition, the pipeline (from image capture through to inference) may need to 

accommodate varying image quality (resolution, frame rates and encoding, etc).

	o Real-time monitoring, remote fault recovery and OTA updates are as critical as model optimisation.

	o For safety-critical applications, such as industrial monitoring or human-machine interaction, 

model integrity, data security, and update traceability must be built into the system from the 

start, as the information needs to be readily throughout the system’s life in the field.

Having trained and pruned the model it is now time to start preparing for edge hardware. 
Quantisation converts the model developed on a desktop machine at floating-point 32-bit 
resolution (FP32) to FP16, 8-bit integer (INT8) or another low-precision format. Quantisation-aware 
training (QAT) helps preserve accuracy. Also, now is the time to match the quantisation format with 
hardware support. For instance, Coral Edge TPU requires 8-bit quantised input tensors. The model 
is converted to the supported format of the target platform: e.g. OpenVINO IR (for Intel-based edge 
devices), TFLite (Android, Edge TPU), TensorRT (NVIDIA Jetson) or ONNX (cross-platform).

Return to Index ^^



When developing software for a vision-based AI at the edge system in addition to 
understanding the functional requirements (objectives) it is important to appreciate 
the underlying hardware as it will impose restrictions on the software stack.
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Hardware Considerations

Let’s start by considering the top-level implications of using the different kinds of hardware. We will 
look at each in detail shortly, but here is a brief comparison showing perhaps their main strengths 
and weaknesses where vison-based AI at the edge is concerned.

Device Description Main Strength Main Weakness

Graphics Processing Unit 
(GPU)

Neural Processing Unit 
(NPU)

Central Processing Unit 
(CPU)

Digital Signal Processor 
(DSP)

Field-Programmable Gate 
Array (FPGA)

Microprocessor Unit 
(MPU)

A highly parallel processor 
designed for rapid image 
rendering and data-
intensive tasks like deep 
learning.

A dedicated AI accelerator 
optimised for executing 
neural network operations 
efficiently.

A general-purpose 
processor capable of 
handling diverse computing 
tasks including control logic 
and OS management.

Optimised for real-time 
signal processing tasks 
such as filtering, FFTs, and 
low-level vision algorithms.

A reconfigurable 
hardware device that 
can be programmed to 
implement custom logic 
for specific tasks.

A general-purpose 
processor used in 
embedded systems 
and capable of running 
operating systems and 
managing complex 
applications.

Excellent parallel 
processing power for large-
scale AI inference.

Great performance and 
energy efficiency for deep 
learning inference tasks.

Versatile and essential for 
managing system-level 
operations and pre/post-
processing in AI pipelines.

Efficient for low-latency, 
real-time signal processing 
with low power usage.

High flexibility and 
parallelism tailored to 
application-specific 
acceleration.

Supports full operating 
systems and multitasking 
in moderately resource-
constrained environments.

High power consumption 
and thermal output, 
making it less ideal for low-
power edge environments.

Limited flexibility. 
NPUs primarily support 
specific AI workloads and 
lack general-purpose 
capabilities.

Poor parallelism and 
slower performance on 
deep learning workloads 
compared to dedicated 
accelerators.

Limited performance on 
modern deep learning 
models and complex vision 
tasks.

Complex to program and 
optimise, with longer 
development cycles 
compared to fixed-
function accelerators.

Lacks native AI 
acceleration.
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Above, only one strength and one weakness was shown for each type of hardware. The following 
sections go into more detail, plus we discuss the software stacks, programming languages and 
frameworks. Alternatively, you can skip these sections and go straight to Vision-Ready SOMs.

Device Description Main Strength Main Weakness

Microcontroller Unit 
(MCU)

Tensor Processing Unit 
(TPU)

A compact processor with 
tightly integrated memory 
and peripherals, designed 
for simple control tasks in 
embedded systems.

A specialised AI accelerator 
developed by Google to 
perform tensor operations 
used in neural networks.

Ultra-low power 
consumption and 
simplicity for lightweight 
edge devices.

High throughput and 
energy efficiency for 
running large neural 
network inference 
workloads.

Limited processing power 
and memory for running 
vision-based AI models.

Limited flexibility, with 
support focused mainly on 
TensorFlow and specific 
model architectures.

Return to Index ^^



Vision-based AI at the edge relies heavily on deep neural networks, especially 
convolutional CNNs, which require large amounts of matrix and vector 
computations. GPUs lends themselves well to CNN tasks thanks to their massive 
parallel processing capabilities.

GPU

Specifically, they have thousands of cores that can perform operations in parallel, accelerating 
inference workloads significantly. This makes them ideal for handling the computational workload 
of deep learning tasks.

GPUs exhibit low latency, low enough to support real-time inference and for processing high-
resolution video streams and are well supported by major AI frameworks (TensorFlow, PyTorch, 
ONNx etc.) and many edge AI SDKs have optimised software stacks for GPU acceleration.

GPU Software Stack Strengths

GPU Software Stack Weaknesses

	o Optimised AI Frameworks. For example, TensorRT, cuDNN and DeepStream SDKs enable efficient 

deployment of DNNs with quantisation, pruning and layer fusion.

	o Containerised Environments. Tools like Docker and NVIDIA NGC make it easy to deploy consistent 

environments at the edge.

	o Hardware-Software Integration. Tight integration between hardware (Jetson Xavier, Orin, etc.) 

and software (JetPack SDK) enables full utilisation of GPU capabilities.

	o Model Optimisation. Support for FP16/INT8 quantisation and pruning to improve performance 

while reducing memory footprint.

	o Ecosystem and Community. Strong developer support, documentation, and ecosystem around 

NVIDIA and CUDA-based stacks.

	o Portability Issues. Models optimised for GPUs (using TensorRT, CUDA) are often not portable 

across non-NVIDIA hardware.

	o High Complexity. Full deployment pipelines (training, conversion, optimisation, deployment) are 

complex and require specialised knowledge.

	o Limited Framework Support. Not all new model architectures are supported out of the box by 

TensorRT or other GPU inference tools.

	o Integration Overhead. Integrating GPU inference into embedded systems may require custom 

drivers, tuning and/or middleware.
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GPU Programming Languages

Language Usage Pros Cons

CUDA 
(C/C++)

Python 
(via PyTorch, TensorFlow)

OpenCL 
(C-based)

C++

Rust

Core language for 
programming NVIDIA 
GPUs.

High-level AI development. 
GPU usage abstracted via 
backends (CUDA/cuDNN).

Portable parallel 
programming across 
vendors (NVIDIA, AMD, Intel).

Often used for deploying 
optimised applications 
with TensorRT or OpenCV.

Emerging as an AI 
language, and attractive 
for applications where 
there is a safety focus.

Full control over GPU 
memory and kernels.
Maximum performance.

Easy and fast prototyping. 
Large community and 
support.

Cross-vendor compatibility.

High performance and 
low-level control.

Comparable to C/C++ but 
considered safer. Great 
for low-latency, high-
throughput workloads.

Steep learning curve. 
Vendor lock-in (NVIDIA 
only). Complex debugging 
and profiling.

Slower than C++ in real-
time inference. Less control 
over low-level optimisation.

Less optimised than CUDA 
on NVIDIA GPUs.

Verbose and requires more 
development time than 
Python.

Steep learning curve. Small 
(but growing) ecosystem 
and community.
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Example Frameworks for Vision-Based AI at the Edge on GPUs

Framework Use Case Pros Cons

NVIDIA JetPack SDK

TensorRT

DeepStream SDK

ONNX Runtime (with 
TensorRT backend)

PyTorch + TorchScript

OpenCV + CUDA Modules

TensorFlow Lite + GPU 
Delegate

Full-stack edge AI on 
Jetson.

High-performance 
inference.

Video analytics at the edge.

Inference across devices.

Training and deployment.

Vision pre/post-processing.

Mobile and edge inference.

Optimised for Jetson. 
Integrated CUDA/cuDNN/
TensorRT.

Fast inference. Supports 
quantisation (INT8/FP16). 
ONNX model import.

High throughput. 
Optimised pipelines. 
GStreamer integration.

Converts PyTorch/
TensorFlow models. Runs 
on GPU (via TensorRT).

Easy to use. Export to 
ONNX. GPU acceleration 
via CUDA.

Real-time image 
processing. Runs on GPU.

Small binary size.  Cross 
platform.

NVIDIA-only. Steep 
learning curve.

Complicated API. NVIDIA-
only.

Complex configuration. 
Limited flexibility.

Compatibility issues with 
custom operations.

Slower than TensorRT. 
More RAM needed.

Not AI-specific. Manual 
optimisation needed.

GPU support weaker than 
NVIDIA stack.
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To accelerate the development of AI-enabled applications some GPU vendors offer a great deal of 
support. Worthy of particular note is NVIDIA’s CUDA-X AI (see Figure 3), a complete deep learning 
programming model and software stack for researchers and software developers to build high 
performance GPU-accelerated applications for, amongst other things, computer vision. 

Figure 3. Built on CUDA-X, NVIDIA’s unified programming model provides a way to develop deep learning applications on 
the desktop or data centre, and deploy them to resource-constrained IoT devices. Source https://developer.nvidia.com/deep-
learning-software

Note:
Also worthy of note - but something the hardware team should already be aware of - is that not all GPUs include 
dedicated hardware coders/decoders (CODECs). Most NVIDIA GPUs do: their CODECs are called NVENC and NVDEC). 
If dedicated hardware CODECs are not present within the selected GPU this will impact the ability to record or stream 
video directly from the device – e.g., inference plus digital video record (DVR) functions. The knock-on effect of poor 
hardware choice can lead to increased latency, excessive CPU load and reduced power efficiency.

Return to Index ^^



NPUs are proving increasingly popular in vision-based AI at the edge 
applications such as drones, autonomous vehicles and smart sensors. They are 
optimised for matrix and tensor operations (core to neural networks) and boast 
high throughput and low power consumption.

NPU

They are good at parallelism and can process multiple computations concurrently, which is vital for 
CNNs. In addition, NPUs are low latency and can be used for real-time inference, essential for object 
detection, face recognition and autonomous navigation, for example. They are energy efficient, too, 
so are ideal if there is a tight power budget.
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NPU Software Stack Strengths

NPU Software Stack Weaknesses

These include the fact that many NPUs come with optimised AI libraries - from vendors like 
Qualcomm, Google, ARM and Intel, for instance – that provide pre-compiled operations, quantisation 
tools and compilers to boost performance. Most NPUs also support popular ML frameworks and 
software stacks often include tools for 8-bit or mixed-precision quantisation, pruning and layer 
fusion.

These include a steep learning curve and the fact that SDKs and compilers are often vendor specific 
(limiting portability). Also, debugging and profiling tools are not as mature as they are for CPUs and 
GPUs. The issue to really watch out for though is that (bizarrely) not all neural network operations 
are supported by NPUs - and CPUs often have to pick on tasks like dynamic flow control and 
complex tensor operations, for instance. Accordingly, when looking for models to run on an NPU, 
and the intended operations, it is important to confirm which layers are fully accelerated and which 
revert to CPU execution. Workloads that require lots of back and forth between NPU and CPU will 
compromise performance, particularly real time.

NPU Programming Languages

Language Pros Cons

Python

C/C++

Embedded C

OpenCL / CUDA

Vendor-specific DSLs / APIs
(e.g. Hexagon NN API [Qualcomm])

Easy to use, high-level and well-
supported.

Fast and close to hardware.

Minimal footprint. Tight control	 .

High performance, parallelism.

Direct control over NPU execution.

Not used directly on-device 
(converted to lower-level formats).

Complex memory management and 
harder to debug.

Very low-level and error prone.

Complex, not universal across all NPUs.

Non-portable across devices. 
Steep learning curve and limited 
community support.
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Example Frameworks for Vision-Based AI at the Edge on NPUs

Framework Target NPUs Pros Cons

TensorFlow Lite

ONNX Runtime

OpenVINO

NVIDIA TensorRT (Jetson)

SNPE (Qualcomm)

MediaTek NeuroPilot

Many (e.g., Coral Edge TPU, 
Android NNAPI).

Qualcomm SNPE, Intel 
OpenVINO, Rockchip, etc.

Intel Myriad X.

NVIDIA NPUs (DLA), GPUs.

Hexagon DSP + NPU 
(Snapdragon).

MediaTek NPUs.

Lightweight, TFLite models 
can be accelerated via 
NNAPI or vendor delegates.

Interoperable with many 
frameworks as ONNX 
exports from PyTorch/
TensorFlow.

Optimised for Intel 
hardware and there is a 
good computer vision 
toolchain.

Extremely optimised. 
Deep TensorFlow/PyTorch 
support.

Tight integration with 
Qualcomm chipsets and 
efficient.

Integrates with Android 
NNAPI and TensorFlow 
Lite.

Limited flexibility, and 
conversion is required.

NPU support often via 
custom backends.

Intel-specific.

Not usable on non-NVIDIA 
hardware.

Proprietary with limited 
documentation.

Android-focused and there 
is limited documentation 
publicly available.

Return to Index ^^



Despite the rise of dedicated ICs that are geared for edge AI and especially 
vision-based applications, CPUs remain very popular. They are available as 
standalone devices (e.g. Intel Core i7, AMD EPYC) and are embedded into MPUs, 
MCUs and system-on-chip (SoC) devices such as Apple M1 and Raspberry Pi 
BCM2711.

CPU

CPUs handle general-purpose tasks well – offering a low/medium level of inference and pre-/
post-processing capabilities - and they are flexible with good support for frameworks, libraries 
and languages. Not surprisingly, they have a very mature ecosystem with good compiler support, 
toolchains, debugging tools, SDK availability and OS-level support (e.g., Linux and RTOS).

However, CPUs (even multicore devices) have limited parallelism compared to GPUs and FPGAs, 
which limits throughput for deep learning inference. CPUs can also suffer from latency issues due 
to non-deterministic scheduling, even if they are multicore devices. Real-time kernels should be 
considered for time-critical inference.

CPU Software Stack Strengths

CPU Software Stack Weaknesses

	o Wide software support. Most AI/ML frameworks support CPU backends (TensorFlow, PyTorch, 

OpenCV, ONNX, etc.).

	o Rich OS-level services. You can run full Linux distributions with networking, file systems, security, etc.

	o Optimisation toolchains. Compilers like LLVM, GCC and AI accelerators like OpenVINO (Intel) or 

ARM Compute Library exist to optimise inference.

	o Less optimised for AI. Many AI frameworks prioritise GPU/NPU backends. CPU support is 

improving, but still slower.

	o Software bloat. Full OS stacks can be heavyweight, which is not ideal for low-latency, real-time 

use unless carefully trimmed.

	o Real-time constraints. Vanilla CPUs with general operating systems (e.g., Linux) aren’t real-time 

unless customised (e.g., using PREEMPT_RT patches).

15
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CPU Programming Languages

Language Pros Cons

C/C++

Python

Rust

Assembly

High performance, close to hardware 
and widely supported.

Easy to read/write. Fast development. 
Huge ML ecosystem (TensorFlow, 
PyTorch).

Memory safety without garbage 
collection. Good performance. 
Increasingly popular for embedded.

Max control and efficiency.

Complex memory management, 
slower development (potentially with 
lots of bug hunting).

Slower execution. May need bindings 
(e.g., with C++) for performance.

Steep learning curve. A small but 
growing ecosystem.

Extremely low-level. Rarely used unless 
optimising certain critical paths.

Example Frameworks for Vision-Based AI at the Edge on CPUs

Framework Language Pros Cons

OpenCV
(Vision processing library)

ONNX Runtime
(Inference engine for 
ONNX models)

TensorFlow Lite
(Lightweight ML 
framework)

ARM Compute Library 
(Low-level optimised 
routines for ARM CPUs)

PyTorch Mobile / 
TorchScript
(ML frameworks)

Intel OpenVINO
Optimised inference toolkit 
(Intel CPUs/VPUs)

C++ (bindings for Python, 
Java, etc.)

C++, Python, C#

C++, Python

C++

C++, Python

C++, Python

Excellent for image pre/
post-processing. Widely 
supported and lightweight. 
Integrates with DNN 
modules.

Lightweight and portable 
across hardware. 
Optimised CPU backends. 
Supports quantised 
models.

Optimised for mobile/edge. 
Good CPU performance 
with quantisation. 

High performance on 
ARM-based devices (e.g., 
Raspberry Pi). Optimised 
convolution and maths 
operations.

Easier for developers 
already using PyTorch. 
Scripted models can run 
on CPU.

Highly optimised for 
Intel CPUs. Post-training 
quantisation, model 
optimisation. Supports 
OpenCV integration.

Direct DNN support 
is basic (compared to 
PyTorch/TensorFlow).
Performance depends 
heavily on hardware 
optimisation.

No training support 
(inference-only). Requires 
conversion from PyTorch/
TF to ONNX.

Conversion from full 
TensorFlow model can be 
tricky. Less transparent 
debugging.

No high-level API (just 
building blocks). Steeper 
development effort.

Less optimised than TFLite 
for small CPUs. Python 
dependency unless fully 
scripted.

Intel only, for best 
performance. Steep 
learning curve.
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These are also commonly used in vision-based AI at the edge applications. Their 
strengths include low latency (making them suitable for real-time vision tasks) 
and their on-chip memory and parallelism.

DSP

They are optimised for specific operations (such as convolution and FFT), making them very power 
efficient and, as is implicit in the name, signal processing: because they have native instruction sets 
for matrix and vector operations. This last aspect makes them good at filtering, image enhancement, 
feature extraction and other key vision tasks.

DSPs are less general purpose than CPUs and GPUs, and deliver lower peak performance than the 
latter, though that might only be an issue if the application has massively parallel workloads (such 
as training a deep network). Also, DSPs in vision tasks depend on low-overhead transfer of data 
between accelerators. Unless memory bandwidth and DMA are correctly configured, bottlenecks 
might occur for some operations. Not surprisingly, as something of a specialist device, the DSP 
developer ecosystem is smaller.

DSP Software Stack Strengths

DSP Software Stack Weaknesses

	o Highly Optimised Libraries. Vendors like Qualcomm, TI and Cadence provide optimised libraries 

(e.g., Hexagon NN, TI Deep Learning [TIDL] and HiFi DSP SDK).

	o RTOS Integration. DSPs are often used with an RTOS, making them ideal for deterministic 

applications.

	o Tight Integration with SoCs. DSPs are often embedded – along with CPUs, NPUs and image 

signal processors (ISPs) - in heterogeneous SoCs, making cross-processing much easier via 

vendor SDKs.

	o Proprietary Toolchains. Many DSPs require vendor-specific compilers and toolchains (e.g., 

Qualcomm’s Hexagon SDK, TI Code Composer Studio), which can be limiting.

	o Limited Framework Compatibility. TensorFlow Lite and ONNX often need custom conversion 

paths to run on DSPs.

	o Manual Optimisation. Developers sometimes need to hand-optimise key routines using DSP 

intrinsics or assembly.

	o Debugging is Harder. Debugging and profiling tools are less advanced compared to those for 

CPUs and GPUs, for instance.
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DSP Programming Languages

Language Pros Cons

C/C++

Python (via conversion)

Assembly (DSP-specific)

Widely supported, low-level control 
and optimised libraries are available.

Used for model development. 
Compatible with TensorFlow Lite or 
ONNX

Maximum performance. Fine-grained 
control.

Manual memory management. 
Harder to debug.

Not used directly on the device. 
Needs conversion to C/C++ or vendor 
intermediate representation.

Tedious and error prone. Not 
portable.

Example Frameworks for Vision-Based AI at the Edge on DSPs

Framework Vendor Pros Cons

Hexagon NN / SNPE

TIDL 
(TI Deep Learning Library)

HiFi DSP SDK

TensorFlow Lite Micro

ONNX Runtime 
(custom backends)

Qualcomm

Texas Instruments

Cadence

Various

Various

Optimised for AI on 
Hexagon DSPs. Supports 
TFLite and ONNX models.

Supports vision models. 
Integrated with TI SoCs.

Audio and vision 
optimised. Good for low-
power apps.

Open source. Can be 
ported to DSPs.

Interoperable format. 
Supports conversion 
pipelines.

Proprietary. Limited 
flexibility.

Complex build setup. 
Limited model support.

Niche use cases. Requires 
licensing.

Needs custom kernels. 
Limited performance 
without tuning.

Backend tuning is 
required. Not always plug-
and-play.
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As mentioned, GPUs can perform thousands of operations in parallel and are 
low latency (sufficiently low for real-time). FPGAs, which have configurable logic 
blocks (see figure 4), tick these boxes too and are ideal for vision tasks such as 
object detection, classification and segmentation (all of which often involve 
parallel operations on pixels or regions). 

FPGA

Unlike GPUs, which may have scheduling delays, FPGAs can not only deliver real-time performance, 
but they are also deterministic, making them perfect for safety-critical applications. FPGAs can be 
very energy efficient for certain workloads because they don’t carry general computing overhead. 
Specifically, the internal hardware (logic gates and look up tables, LUTs) can be configured for the 
dataflow of a neural network model, including optimised pipelines, quantisation and even pruned 
models.

However, depending on the application, long-term maintainability may need to be factored in, and 
may rule out the use of an FPGA. Specifically, whilst performance is deterministic, FPGAs might not 
be the best solution if the application is to have frequent model updates.

DSP Software Stack Strengths

	o Highly Optimised Libraries. Vendors like Qualcomm, TI and Cadence provide optimised libraries 

(e.g., Hexagon NN, TI Deep Learning [TIDL] and HiFi DSP SDK).

	o RTOS Integration. DSPs are often used with an RTOS, making them ideal for deterministic 

applications.

	o Tight Integration with SoCs. DSPs are often embedded – along with CPUs, NPUs and image 

signal processors (ISPs) - in heterogeneous SoCs, making cross-processing much easier via 

vendor SDKs.

19

Figure 4. FPGAs contain configurable logic elements. Some also contain DSP blocks, useful for dot-product calculations (a 
fundamental operation in linear algebra that is widely used in areas like ML and computer graphics). Source Edge AI + Vision 
Alliance. https://www.edge-ai-vision.com/2016/08/fpgas-for-deep-learning-based-vision-processing/



DSP Software Stack Weaknesses

	o Proprietary Toolchains. Many DSPs require vendor-specific compilers and toolchains (e.g., 

Qualcomm’s Hexagon SDK, TI Code Composer Studio), which can be limiting.

	o Limited Framework Compatibility. TensorFlow Lite and ONNX often need custom conversion 

paths to run on DSPs.

	o Manual Optimisation. Developers sometimes need to hand-optimise key routines using DSP 

intrinsics or assembly.

	o Debugging is Harder. Debugging and profiling tools are less advanced compared to those for 

CPUs and GPUs, for instance.
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Example Frameworks for Vision-Based AI at the Edge on FPGAs

Framework Languages Pros Cons

OpenCL for FPGAs
(multiple vendors)

Xilinx Vitis AI
(for Xilinx FPGAs such as 
Zynq and Versal)

Intel OpenVINO + FPGA 
Plugin (for Intel FPGAs 
such as Arria and Stratix)

OpenCL C (based on 
C99 subset), C/C++ with 
OpenCL API

Python (for API), C++, HLS, 
VHDL

C++, OpenCL

Cross-platform (with 
some caveats) and high-
level programming for 
parallelism.

Pre-optimised Deep-
Learning Processing Unit 
(DPU) for CNNs. Powerful 
profiling tools.

Runs OpenVINO models 
on FPGAs. Pre-compiled 
bitstreams for some 
networks. Easy deployment 
from trained models.

Performance varies. Long 
compile times. Less control 
than HDL.

Steep learning curve for 
full toolchain. Tied to Xilinx 
hardware.

Less customisation of 
hardware logic. 

FPGA Programming Languages

Language Description Pros Cons

VHDL / Verilog

SystemVerilog

High-Level Synthesis (HLS) 
(e.g., C/C++, OpenCL)

Python 
(via tools like PYNQ)

Low-level Hardware 
Description Languages 
(HDLs).

Modern HDL with object-
oriented features.

C/C++ code compiled to 
hardware logic.

Python wrapper for FPGA 
APIs (mainly for Xilinx 
boards).

Full control. Efficient/
mature toolchain. 

Better modularity than 
Verilog/VHDL.

Faster development. Easier 
for software engineers.

Easy prototyping, 
accessible.

Steep learning curve, 
verbose and error prone.

Still requires deep 
hardware knowledge.

Often less efficient than 
handcrafted HDL.

Not for low-level hardware 
development.
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Microprocessors are commonly used for vision-based AI at the edge due to their 
balance of computational capability, flexibility and software support.

MPU

Relative to their cost, they offer great performance (especially devices with 32- or 64-bit cores such 
as Arm Cortex-A) compared to CPUs. They also support Linux-based OSes (e.g., Yocto Linux and 
Ubuntu Core), which enable complex software stacks, computer vision libraries, and frameworks 
like OpenCV and TensorFlow Lite. In addition, many modern MPUs integrate AI/ML accelerators or 
GPU/ISP blocks to handle intensive computer vision workloads.

Understandably, as such a popular embedded system device, MPUs typically have interfaces 
for camera inputs (MIPI-CSI) that are crucial for vision systems. And many MPUs have real-time 
capabilities for latency-sensitive vision tasks. However, when several cameras are connected, the 
MPU’s internal bus and memory architecture needs to be able to sustain the combined throughput 
without frame drops or inference lag.

MPU Software Stack Strengths

MPU Software Stack Weaknesses

	o Rich OS environment: Linux on MPUs enables multitasking, multi-threading, containerisation 

(e.g., Docker), and access to well-established software ecosystems.

	o Broad AI framework support: TensorFlow Lite, ONNX Runtime, PyTorch (limited), and OpenCV 

are natively supported or easily cross-compiled.

	o Custom ML model deployment: MPUs often support tools for quantisation, pruning, and cross-

compilation of neural networks to run efficiently on-device.

	o Good community and vendor support, especially for the most popular MPU devices.

	o Complex development: Building software for MPUs involves cross-compiling and managing 

dependencies.

	o Latency and power: While better than cloud, MPUs are not always optimal for real-time, ultra-

low-latency vision (a GPU or FPGAs might be better).

	o Software fragmentation: Different vendors have different SDKs and toolchains (e.g., NXP’s eIQ 

and TI’s Edge AI SDK), which can cause portability issues.

	o Security patching and updates: If the OS is embedded Linux, keeping it secure and up-t-date is 

non-trivial, especially in long-lifecycle devices.
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MPU Programming Languages

Example Frameworks for Vision-Based AI at the Edge on MPUs

Framework Use case Pros Cons

OpenCV

TensorFlow Lite

ONNX Runtime

GStreamer

Vendor SDKs (e.g., NXP eIQ, 
TI EdgeAI)

Computer vision and 
image processing.

ML inference.

Inference with various 
backends.

Video pipeline 
management.

HW-specific acceleration.

Open source and well-
documented.

Optimised for edge, 
supports quantisation.

Interoperability across 
frameworks.

Efficient streaming, 
integration with OpenCV.

Uses built-in accelerators, 
optimised.

Can be heavy on the MPU’s 
CPU.

Limited model support 
compared to full 
TensorFlow.

Less optimised for all 
hardware.

Complex to configure.

Vendor lock-in. Steep 
learning curve.

Language Use case Pros Cons

C/C++

Python

Shell scripts (Bash)

Rust

Drivers, real-time 
components, OpenCV, 
GStreamer.

Rapid prototyping, AI 
frameworks (TensorFlow 
Lite, PyTorch), OpenCV 
scripting.

System-level automation, 
startup scripts.

Safe systems 
programming.

Fast, good hardware 
control, widespread.

Easy syntax, strong AI 
ecosystem.

Lightweight, integrated 
into Linux.

Memory safety, 
performance.

Error prone. Not necessarily 
the safest language to use.

Slower and needs Python 
runtime.

Not suitable for complex 
logic

Smaller ecosystem, 
learning curve.
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Microcontrollers are increasingly being used for vision-based AI at the edge 
due to their low power consumption, small footprint, and increasingly capable 
hardware (which offers real-time responses). 

MCU

However, they have limited compute power - so the inference must be highly optimised – and 
limited RAM and Flash memory, limiting model size, input resolution and image buffers. MCUs can 
also suffer limited I/O bandwidth.

Despite these limitations, MCUs are still capable of being used in basic vision-based AI at the edge 
applications such as object recognition, gesture recognition, bar code / QR code reading, and 
industrial monitoring (e.g. defect detection).

MCU Software Stack Strengths

MCU Software Stack Weaknesses

	o Deterministic behaviour thanks to minimal software layers.

	o Using an RTOS or going bare metal gives fine-grained control over scheduling and power 

management.

	o This is low-level development work that requires in-depth knowledge of hardware (e.g. register-

level programming, direct memory access [DMA] and interrupts).

	o The stack needs to be optimised by hand for core functions such as single instruction, multiple 

data (SIMD).

	o Limited framework support, compared to Linux or Android environments, and therefore less 

compatibility with mainstream AI/ML frameworks.
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Note:
MCU-based systems should have lightweight update mechanisms and memory-efficient model deployment to allow 
field maintenance.
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MCU Programming Languages

Language Pros Cons

C

C++

MicroPython / CircuitPython

Rust

Extremely efficient (in terms of 
performance versus memory), 
ubiquitous in embedded 
environments, full control of memory 
and hardware.

Adds object oriented, templates, and 
some abstraction over C. Still highly 
efficient.

Much easier and faster for 
prototyping.

Memory safety without garbage 
collection. High performance with 
modern tooling.

Verbose and error prone (memory 
safety, buffer overflows). Poor 
abstraction for complex AI logic.

Feature-heavy (template 
metaprogramming, RTTI) can bloat 
code if not used carefully. Limited 
library ecosystem compared to 
desktop/server C++.

High memory overhead. Very limited 
support for AI inference on vision 
data.

Steep learning curve. Toolchain and 
ecosystem for embedded are still 
maturing.

Example Frameworks for Vision-Based AI at the Edge on MCUs

Language Pros

TensorFlow Lite for Microcontrollers 
(TFLM)

CMSIS-NN (Arm Cortex-M CPUs)

Edge Impulse

NNoM

Designed specifically for MCUs (no 
dynamic memory allocation), good 
support for quantised models (INT8) 
and good community support.

Highly optimised NN kernels for Arm 
Cortex-M. Works well with TFLM for 
efficient inference.

Web-based platform for data 
collection, training, and deployment 
to MCUs. Supports TFLM backend. 
Great for rapid prototyping and 
deployment

Lightweight NN inference library for 
MCUs. Fully written in C.

Limited operator support (e.g., 
no support for large or complex 
layers), it lacks model training 
(must use pre-trained models from 
TensorFlow), and model conversion 
and optimisation can be tricky.

Only provides kernels (no model 
compiler or graph representation), 
low-level and harder to use alone.

Less flexible for custom models. 
Requires cloud platform for training. 
Not ideal for full control or proprietary 
pipelines.

Not widely adopted. Less community 
support and documentation.
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Tensor Processing Units are specialised hardware accelerators designed by 
Google primarily for accelerating machine learning workloads, particularly 
those involving neural networks. In the context of vision-based AI at the edge, 
TPUs are increasingly used because they offer a unique mix of power efficiency, 
speed, and parallelism: which is critical when deploying AI models in edge 
devices like cameras, drones, smartphones and IoT systems.

TPU

TPUs are optimised for the kinds of matrix operations that dominate vision tasks (e.g., convolutions 
in CNNs). Also, dedicated edge TPUs (e.g., Google’s Coral TPU) are specifically designed for low-
latency inference on small, efficient models like MobileNet. 

They can be embedded into tiny systems (e.g., Coral USB Accelerator) - making them ideal for 
compact edge devices - and are particularly fast when working with 8-bit quantised models, which 
are common in edge deployments to reduce memory and improve inference speed.
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TPU Software Stack Strengths

TPU Software Stack Weaknesses

Edge TPUs are tightly integrated with TensorFlow Lite, Google’s lightweight framework for mobile 
and embedded devices, and optimised TFLite models can be compiled directly using the Edge TPU 
Compiler. Full support and documentation from Google make the development process smoother 
if you stay within their toolchain, and integration with other Google tools (e.g., Colab and Cloud AI) 
is seamless.

Because TPUs are optimised for specific workloads and operations, custom layers or complex 
architectures not supported (by the TPU) will need to be performed by a CPU or MPU, for example. 
Edge TPUs only support a subset of TensorFlow operations. Also, only quantised (INT8) models 
are supported, so additional steps like post-training quantisation or QAT, which can be complex, 
are required. Precision loss from quantisation can degrade accuracy if not handled carefully. 
Understandably, the software stack (Edge TPU Compiler, runtime, etc.) is tightly controlled by 
Google, and there is less community-driven support compared to more open platforms (e.g., NVIDIA 
Jetson with PyTorch).

TPU Programming Languages

Language Usage Pros Cons

Python

C++

Shell (CLI)

Main language for 
model development and 
deployment.

Used for custom 
applications using TFLite 
C++ APIs.

For compiling models with 
Edge TPU Compiler.

Easy to use. Supported by 
TensorFlow, TFLite, and 
Edge TPU runtime.

High performance, low 
overhead.

Quick integration into 
deployment pipeline.

Less efficient for low-level 
operations.

Steeper learning curve; 
more boilerplate.

Minimal logic possible.
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Example Frameworks for Vision-Based AI at the Edge on TPUs

Framework Usage Pros Cons

TensorFlow + 
TensorFlow Lite

PyTorch 
(via ONNX → TFLite)

Edge TPU Runtime

Primary framework for 
training and deploying 
models to TPUs.

Possible via conversion to 
TFLite.

Required to execute 
models on Edge TPU.

Excellent support (end-to-
end flow) with good tools 
for quantization and model 
optimisation.

Familiar syntax and a 
strong community.

Fast and optimised.

Steep learning curve.

Conversion to TFLite may 
break some operations, 
and quantisation not as 
mature.

Supports only a limited set 
of models and operations.
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Having discussed the above core hardware technologies let’s consider commercially 
available vision system on modules (vision-SOMs) that lend themselves well to 
developing AI-enabled applications. Figure 5 shows an example.

Vision-Ready SOMs

The advantages of using a vision-ready SOM include:

	o Lower risk. Developing custom hardware comes with significant risk such as hardware bugs, 

power and thermal management issues and potential manufacturing defects. Also, the extent of 

its compatibility with other systems might not be known until it is in the field. SOMs on the other 

hand are field proven, tested for stability and often supported by their OEMs or third parties.

	o Reduced development time. SOMs come pre-designed with a working processing ‘engine’ (be 

it a GPU, MPU, DSP etc.), memory (RAM and ROM) and I/O interfaces. This removes the need 

to design and test complex hardware subsystems, allowing the project to focus on software 

development and system integration. Vision-SOMs provide even more - specifically dedicated 

pre-integrated camera interfaces (such as MIPI CSI or parallel interfaces) - reducing design effort 

even further.

	o Reduced certification burden. SOMs often carry regulatory pre-certifications (e.g., FCC, CE), 

reducing the burden on your own product certification process. This is especially advantageous 

for wireless-enabled modules or medical/industrial systems.

	o Ecosystem and community support. Popular SOMs have active communities and support 

channels, which speeds up troubleshooting and provides access to tutorials, libraries and 

example code.

	o Integrated AI acceleration for real-time inference. Many vision-SOMs (e.g., NVIDIA Jetson, Google 

Coral, NXP i.MX 8M Plus SOMs) include AI/ML hardware accelerators for the core processing 

engine (again, GPU, NPU or DSP, for example).

	o Stack availability. Vision SOMs typically include or support Linux distributions (Yocto, Ubuntu, 

etc.), AI SDKs (TensorRT, OpenCV, GStreamer, etc.) and pre-built drivers for vision peripherals. This 

dramatically lowers software integration effort, especially for camera and sensor support.
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Figure 5. Machine vision requires embedded systems that can analyse data on the spot and offer configurable sensor 
capabilities. SOMs enable developers to take advantage of machine vision at scale while keeping costs low. 
Source AMD: https://www.amd.com/en/products/system-on-modules/what-is-a-som.html



A word of warning: SOM availability changes fast as, understandably, new products are being 
launched to serve the growing market that is AI at the edge. Accordingly, developers must check 
module lifecycles before anything is finalised. 

Also, be mindful of the fact that SOM manufacturers vary massively in SDK and OS update schedules. 
If the system you are developing will be deployed for a few years you need to be confident that there 
will be long-term support for kernels and drivers. And it is recommended that your organisation/
team sets reminders to check if (or rather when) support will end. 

	o Modularity and scalability. SOMs can be easily upgraded (e.g., moving from a Jetson Nano to a 

Jetson Xavier) while keeping the same baseboard. This allows for products to be scaled/upgraded 

with minimal redesign effort but be mindful of starting off with too little or too much scope for 

expansion. Also, you will of course be tied to the SOM’s physical spec (including interfaces).

	o Cost-effective for low- to mid-volumes. Vision-SOMs are very cost-effective at prototype and 

production volumes under 10k units, where NRE costs of a custom PCB would be prohibitive.
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A step beyond using a vison-ready SOM is to use an industrial / edge AI platform. 
The main advantage of doing so is that you start your project with a turnkey 
solution: a validated hardware / software environment that drastically shortens 
development time, improves reliability and performance for real-time vision at 
the edge. Integration risk is lowered too.

Vison-Ready AI Computing Platform: 
An Example

So, what might a platform comprise? To best answer that, let’s consider an example: Innodisk’s 
APEX-X100 (see Figure 6). It is offered with an NVIDIA RTX 6000 Ada accelerator (18,176 CUDA cores, 
568 Tensor cores, 142 RT cores; 48GB GDDR6) which gives large inference/fine-tuning headroom for 
modern vision models and multimodal workloads. That’s useful when you need high throughput 
(multi-camera) or want to run larger models locally.

The APEX-X100 also comes with Intel 13th-Gen Core i7 or i9 options, up to 128GB (or more in some 
variants) of DDR5 and 512GB–1TB (or higher) NVMe pre-installed, all of which is ideal for preprocessing, 
batching and running auxiliary services.
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Figure 6. The APEX-X100 is an industrial / edge AI computing platform designed to support demanding vision and compute 
heavy workloads such as local model training, inference and fine tuning. 1 = the compute hardware. 2 = a DRAM module that 
supports up to four Innodisk DDR5 4400 UDIMM modules. 3 = Flash storage (featuring an Innodisk industrial-grade M.2 4TG2-P 
512GB SSD with a PCIe Gen 4 x4 interface). 4 =an out-of-band remote management module. 5 = I/O ports (specifically three 
2.5Gbps LANs, a 10Gbps LAN, multiple high speed USB ports and various COM/DIO ports). 
Source Innodisk. https://www.innodisk.com/en/edge-ai-systems/nvidia-solution/apex-x100



Model Selection, Deployment and Optimisation

Model Selection, Deployment and Optimisation

Model Selection, Deployment and Optimisation

In terms of how the APEX-X100 might be used by software developers:

	o Models can be selected that take advantage of the GPU /Tensor cores. Example models include 

YOLO (v7/v8), Faster R CNN and Mask R CNN.

	o Use frameworks and inference acceleration libraries such as NVIDIA’s TensorRT, ONNX Runtime 

with CUDA, cuDNN; possibly even model quantisation / pruning for faster inference.

	o For fine tuning / training, you can ensure the model fits within the GPU memory.

	o Camera ingress. You’ll need to connect cameras / vision sensors. The APEX X100 offers many 

I/O options (USB, 10/2.5 GbE, etc). If you use MIPI or GMSL cameras, you might need additional 

capture hardware or interface boards.

	o Storage and data pipeline. Real time vision yields large amounts of data. Fast NVMe for buffering 

or storing images/videos. Possibly RAID or external storage for archiving. Tip: use SSDs with 

industrial grade durability for reliability.

	o Networking / communication. Streaming video or sending inference results over a network 

requires high bandwidth (10 Gbps or multiple 2.5 Gbps links) and reliable network stack. Edge 

deployment may require remote management and monitoring (the APEX X100’s OOB helps in 

this respect).

	o OS / runtime environment. Your application could run on Windows IoT / Windows Server but 

many vision/AI frameworks run better on Linux (e.g. PyTorch, TensorFlow, OpenCV, etc.) or 

containers (which better support portability).

	o Inference / training pipeline. This is from data ingestion (from cameras) through to pre-processing 

(resizing, normalisation), batch or streaming inference, post processing, and visualisation and/or 

alerting.

	o Edge/cloud syncing. If data logging or model retraining happens centrally, you may need to 

sync data/models with the cloud or central servers. APEX X100 could act as a node in a larger 

distributed system.

	o Security and maintenance. You need secure boot, OS updates, encrypted storage and be sure to 

safe firmware/drivers. The remote / OOB management will help with maintaining and monitoring 

health (especially if deployed in remote / harsh environments). Note: the OOB management 

should be integrated into software workflows for monitoring and recovery, and not just hardware-

level control. Indeed, hardware-level control might not even be possible for some devices that 

communicate over wired protocols such as Ethernet.

*Tip*
You should use the exact same number and types of cameras that will be used in the field, as the use of multiple high 
bandwidth cameras will directly impact disk I/O and buffering.
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When selecting a camera for a vision-based AI at the edge application, there 
are several critical factors to consider, and decisions made early on in the flow 
will have direct implications on ease of integration, system performance, power 
consumption and, ultimately, the success of the project. 

Cameras

Making those decisions is a system-level one and software engineers must be included to ensure 
the chosen camera does not become a bottleneck during development or deployment. Also, in the 
list that follows, not all points raised are of direct relevance to the project’s software engineers, but 
we share them on the premise that there is no harm in raising awareness and presenting a broader 
picture.

What to look for and why

	o Resolution. Higher resolution means more detail but also more data to process, so choose a 

resolution that matches the needs of your AI model (e.g., object detection may need less detail 

than facial recognition).

	o Frame Rate (FPS). Real-time applications (e.g., robotics, surveillance) may require 30 FPS or higher 

whereas slower frame rates might suffice for static or periodic tasks (e.g., industrial inspection).

	o Frame Synchronisation and Spatial Calibration. These are vital for accurate detection/tracking in 

multi-camera system.

	o Interface and Connectivity. Options include USB, MIPI CSI and Ethernet - but the choice may be 

driven by the edge hardware - and you should consider bandwidth and driver support.

	o Sensor Type. CMOS is the most common type as it is faster and more power-efficient than CCD. 

As for colour (RGB) vs monochrome, the latter performs better in low light and offers higher 

contrast for certain AI tasks.

	o Lens and Field of View (FoV). Understandably, wide-angle is best for monitoring or tracking and 

narrow FoV is better for detail or distance work. Subject variability will govern whether you opt 

for fixed- or auto-focus. Note: Camera housings and mounting should also be evaluated for the 

deployment environment.

	o Lighting Conditions. These will drive the camera’s requirements in terms of low-light sensitivity, 

IR capability (for night vision) or HDR support for high-contrast scenes. Also, some edge cameras 

support global shutter for fast-moving objects.

	o Driver and Software Support. Check the availability of drivers for your edge platform (Linux, 

Android, etc.) as well as support for GStreamer, OpenCV and AI SDKs (NVIDIA Jetson, OpenVINO, 

etc.), for example.
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The inclusion of software engineers in camera selection is a must. It ensures the selected camera 
interfaces properly with the platform, AI frameworks (e.g., TensorFlow Lite, PyTorch), and drivers. Also, 
the camera’s output directly affects inference performance and memory usage, and when it comes 
to prototyping it will be the software engineers that will be largely responsible for investigating any 
frame drops, latency issues or poor image quality.

In terms of ensuring maintainability, there is a strong argument for standardised camera modules 
(an example of which is shown in Figure 7). 

Camera selection

32

Figure 7. Above, Innodisk’s EV8U-LSM-RLCF is a USB 2.0 8MP resolution, 30fps fixed focus camera module with OS support for 
Windows, Linux and Android. It can be used in low light conditions thanks to an integrated image signal processor (ISP)
Source: https://www.innodisk.com/en/products/camera/usb-20/ev8u-lsm1-rlcf

Return to Index ^^
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Whilst we extolled the benefits of going down the SOM or vision-ready AI 
platform route, customisation almost always becomes necessary to align 
the hardware, software, and deployment environment with the specific 
requirements of your use case. Most if not all of the customisation you 
will be doing yourself, so please note the following...

Customisation

Pitfalls to avoid:

	o Underestimating Integration Complexity. Hardware and software stacks (e.g., camera SDKs 

+ inference runtime) can conflict. Also, while early proof-of-concept systems may work fine, 

scaling to production often exposes bottlenecks (which is why, above, we recommend using end 

application cameras in their intended quantities).

	o Thermal or Power Issues. Many teams forget to test under sustained load, causing throttling or 

brownouts.

	o Portability. Choosing accelerators or SDKs with limited cross-platform support can trap you. 

Ensure your models and code are portable.

	o Insufficient Lifecycle Planning. Industrial deployments often need 5–10 years of component 

availability and sectors such as medical, possibly longer. Pick components (storage, GPU, NIC) 

with known lifecycle commitments. Note, Innodisk has an excellent reputation in this respect, 

and it certainly an area in which Simms offers value (see later).

	o Overlooking Maintenance and Updates. Again, we have already mentioned that the first day of 

deployment is just the start on the vision-based, AI-enabled system’s life at the edge. Devices 

need secure, remote OTA updates. Overlooking this will almost certainly lead to operational pain 

later.

	o Poor Dataset Fit. Again, when we discussed the flow, we stressed that edge environments can 

differ in lighting, motion blur, or camera angles. You may need to use custom datasets and on-

site fine-tuning to assure robust performance.

However, even if your team has good, all-round engineering and AI/ML skills, outsourcing some 
parts of the customisation often makes sense. Reasons include faster time to market; help with 
meeting regulatory and reliability compliance requirements; increasing your confidence in your 
ability to assure your customers that lifecycle management and long-term support are available; 
and help with ruggedising your system for life in a harsh environment (for example, SSD endurance 
through power-loss protection).



34

Where Innodisk adds value:

	o Hardware and Firmware Co-Design. Deep control of SSD firmware, DRAM validation, and industrial 

motherboards. Innodisk can optimise I/O throughput and storage performance specifically for 

your AI vision workload. The OEM can also personalise your system’s BIOs for unique usage and 

increase system efficiency.

	o Vision-Ready Platform Experience (APEX Series). Already integrated with NVIDIA/Qualcomm 

accelerators, so custom thermal and power tuning is streamlined. Ready for industrial edge 

environments — rugged, compact, and stable.

	o Turnkey Integration and Validation. Innodisk can test your AI model on their hardware, check 

compatibility, and ensure long-term stability.

	o Lifecycle and Supply Chain Stability. As an industrial supplier, Innodisk manages long-term 

availability and batch consistency, unlike vendors largely focussed on supplying consumer 

hardware.

Return to Index ^^
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We can help accelerate your vision-based AI at the Edge project

Why Simms?

In this white paper we have provided a wealth of information - not only offering advice but also 
warning of pitfalls – to help you fasttrack the development of your project. Further acceleration can 
be achieved through establishing good relationships with key suppliers, particularly distributors that 
not only provide good technical support themselves but also have direct access to the specialists 
within the OEM organisations they represent. 

If you are developing a vision-based AI at the edge system around a core processing device (and we 
have discussed many types in this white paper) you will also need industrial-grade memory (RAM 
and NVM) and embedded peripherals, cameras as a minimum. You will probably need SDKs and 
prototyping boards too.

Alternatively, and as stressed above, vison-ready SOMs and AI computing platforms boast many 
benefits, not the least of which is a shorter time to market. It is essential to select the most 
appropriate SOM or platform for not only your immediate project but also your long-term objectives: 
for example, IP re-use on subsequent projects. And as emphasised throughout this paper, if the 
underlying hardware wrong (incorrectly selected), many software-controlled functions might be 
constrained, and overall performance compromised.

Simms can help you make the right choices and supply the hardware plus any support you need 
to accelerate your project. Indeed, the company brings deep technical expertise, helping you align 
your software architecture and performance goals with the optimal hardware configuration.

As a specialist distributor, Simms bridges the gap between developers, system architects and world-
leading manufacturers such as Innodisk. The company connects software innovators (like you) 
who are building vision-based AI at the edge with the hardware platforms that make their vision a 
reality; thus helping them move as fast as possible from concept to deployment: with solutions that 
are reliable, scalable and ready for industrial environments.

Importantly, Simms works collaboratively and in a structured flow, that begins with developing a 
clear understanding of the application and workload. From there, Simms matches the intended 
software environment (including models) to the most suitable compute, memory, and storage 
technologies to accelerate development and de-risk deployment. 

In essence, Simms is far more than a distributor. When you engage with the company you benefit 
from a sound bridge between intelligent software and industrial-grade hardware, backed by long-
standing vendor relationships and decades of embedded experience. 
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Selecting the right compute module is only one 
part of delivering a robust vision-AI edge system.

Our partner Innodisk

Real-world deployments depend heavily on how well the surrounding hardware performs over 
time: the endurance of storage under constant data ingest, the stability of DRAM under sustained 
inference loads, the consistency of component behaviour across production batches and the ease 
with which devices can be maintained in the field. This is where Innodisk excels.

Unlike consumer or enterprise SSD vendors, Innodisk engineers the firmware, NAND selection, and 
controller behaviour around the realities of edge vision systems. Models are cached and updated 
frequently; cameras continuously generate high-write workloads; local logs accumulate; inference 
pipelines generate random access patterns. Innodisk SSDs are optimised for these patterns and 
incorporate features such as power-loss protection, advanced wear-levelling and configurable over-
provisioning, ensuring inference pipelines remain stable as systems age.

AI inference on GPUs, NPUs or accelerators often exposes weak points in memory design—
temperature drift, timing errors, or unpredictable throttle events. Innodisk’s industrial DRAM 
modules are validated in wide operating temperature ranges and under non-stop load conditions, 
reducing the “silent” instability issues that can derail edge AI projects and are notoriously difficult 
to diagnose at the application layer.

Innodisk’s APEX series represents a step beyond discrete memory and storage. These platforms 
give development teams a pre-validated environment where GPU acceleration, DDR5 capacity, 
PCIe storage, cooling, and remote management have already been engineered to work together. 
This avoids the integration trap many teams face - where individually excellent components 
underperform when put into a 24/7, multi-camera deployment.

Edge AI systems often operate in locations that are inaccessible or mission critical. Innodisk’s out-of-
band management modules allow devices to be recovered, updated, or re-imaged without OS-level 
access. Combined with long-term component availability and strict batch-to-batch consistency, this 
gives engineering teams confidence that prototypes will behave the same as production hardware, 
and that deployed units will remain supportable years later.

Through our relationship with Innodisk, Simms can bring you into direct contact with their 
engineering teams. This includes firmware tuning for endurance profiles, pre-deployment validation 
of your AI workloads, platform-level customisation, and lifecycle planning. Rather than selecting 
memory or compute in isolation, we help you align the behaviour of your models, data ingestion 
pipeline and system architecture with the exact hardware that will support it for the duration of its 
life in the field.

Industrial Memory for AI Workloads

Validated DRAM for Sustained Compute

Vision-Ready Platforms, Not Just Components

Deployment, Recovery and Lifecycle

Simms + Innodisk = Faster, Safer Deployment
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This white paper was written by Simms technical specialists.
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There is a growing demand for vision-based AI at the edge system in virtually 
every industry sector. In developing those systems, software engineers face 
many challenges that can be made all the more difficult by the underlying 
hardware.

Summary

Its strengths and weakness in relation to the software stack must be fully appreciated; and software 
engineers must be involved in hardware selection if the project is to run on time and risks reduced.

In terms of fast tracking (and further reducing risk) SOMs and AI-ready platforms offer a compelling 
abstraction layer between AI software and edge hardware, allowing software developers to focus on 
high-level optimisation. Indeed, by leveraging SOMs / AI-ready platforms with built-in support for 
neural accelerators, vision pipelines and robust SDKs, teams can prototype rapidly, scale efficiently 
and deploy confidently in the field.

Lastly, do not overlook the considerable role the distributor of the underlying hardware can play in 
accelerating your project. They can help with hardware selection, and they have direct contact with 
the OEMs, who in turn can assist and even customise solutions for you.

About the Authors
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A global industry partnership (100+ member companies) focused on edge AI + computer vision. 
Supports product creators, offers education, market/technology-trends insight, and addresses 
“bringing vision + AI to products” challenges.

A foundation dedicated to edge AI (including tinyML, embedded systems) covering hardware, 
software, ecosystems, and deployment. Good fit when discussing “AI-ready modules” and 
ecosystems.

NVIDIA Jetson (Nano, Xavier, Orin series):

Google Coral (Edge TPU SOMs):

NXP i.MX 8M Plus SOMs (Toradex, Variscite, TechNexion, etc.):

Raspberry Pi Compute Module (CM4/CM5) (often used for lightweight vision applications):

NVIDIA Developer Forums (Jetson Subforum)

Coral Community Forum

NXP Community (MCU & i.MX forums)

Raspberry Pi Forums

Variscite Forums and Wiki

JetsonHacks

GitHub: Coral Dev Board / Edge TPU Examples

Toradex Developer Center 

TechNexion Community

GitHub Projects

	o www.edge-ai-vision.com

	o www.edgeaifoundation.org

	o forums.developer.nvidia.com/c/jetson-embedded-systems/70

	o www.coral.ai/community/

	o community.nxp.com

	o forums.raspberrypi.com

	o www.variwiki.com

	o www.jetsonhacks.com

	o www.github.com/google-coral

	o developer.toradex.com

	o www.technexion.com 

	o www.github.com/dusty-nv/jetson-inference
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Useful Links

Edge AI + Vision Alliance.

EDGE AI Foundation.

SOM community and support resources:
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https://www.edgeaifoundation.org
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https://www.variwiki.com
https://www.jetsonhacks.com
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https://developer.toradex.com
https://www.technexion.com
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