siIMmms

How to fast track the
development of vision-
based Al at the edge



Abstract

As demand rises for real-time, intelligent vision applications from smart
factories to autonomous drones the need to deploy Al (and its subset ML) at the
edge has never been greater.

However, many software development teams face a steep learning curve when translating powerful
Al models into responsive, power-efficient edge solutions. The challenges lie not only in model
optimisation but also in navigating fragmented hardware ecosystems, achieving tight performance
goals and ensuring scalability from prototype to production.

This white paper addresses the core pain points software engineers encounter when bringing
vision-based Al to edge systems. Many of these pain points are as a result of the selected underlying
hardware, and we explore in detail the strengths and weaknesses of the software stacks depending
on which hardware is selected.

We also explore how adopting vision and Al-ready pre-validated platformms can dramatically
accelerate time-to-market, simplify development and de-risk deployment, citing Innodisk’s
APEX-X100 platform by way of example.




Introduction

The Flow

Hardware Considerations

Software Stacks, Languages and Frameworks For:

Graphics Processing Unit (GPU)

Neural Processing Unit (NPU)

Central Processing Unit (CPU)

Digital Signal Processor (DSP)

Field-Programmable Gate Array (FPGA)

Microprocessor Unit (MPU)

Microcontroller Unit (MCU)

Tensor Processing Unit (TPU)

Vison-Ready SOMs

Vison-Ready Al Computing Platform: An Example

Cameras

Customisation

How Simms Can Help Accelerate your Vision-based Al at the Edge Project

Summary

Useful Links

04

06

08

21

23

25

27

29

31

33

35

37

38




Introduction

The shift from cloud-centric artificial intelligence (Al) to the edge in vision-based
systems has numerous benefits, including fast (up to real-time) decision making
and enhanced privacy.

As for applications, there are many. For example, Al-enabled vision-based systems are appearing in
industrial automation and manufacturing, automotive and transportation, retail and smart stores,
agriculture, security and surveillance, aerospace and drones, and smart cities and homes.

For software engineers developing Al-enabled functionality the move to the edge introduces a
number of significant technical challenges. For instance, unlike cloud-based systems with virtually
unlimited resources, edge environments are heterogeneous, resource-constrained and often
difficult to scale. Also, there is the familiar backdrop of commmercial pressure to be early (and ideally
first) to market with a high performance, reliable solution that serves a market need. Regulatory
compliance is almost always required too.

Most of the technical challenges software engineers face have their roots in hardware: and we
cannot stress this enough. For instance, depending on key performance requirements, vision-
based Al at the edge apps can run on a variety of hardware device types, each with their own
strength and weakness.

Devices with limited processing power and memory makes running deep learning models (such as
convolutional neural networks, CNNs) difficult without model optimisation, a task that falls squarely
with the project’s software engineers.

Many edge environments vary significantly, particularly those outdoors (e.g. variable / poor lighting),
there may also be motion-blur and, if the camera is on a moving platform, such as an autonomous
guided robot (AGR), angles will be changing all the time. The upshot: models trained in the lab may
underperform in the real world and, again, it is for the software engineer to find optimal solutions.

Another challenge is often data fusion, as some vision-based Al applications must work with
multiple vision/sensing techniques (see figure 1). GPS may also be required, all of which means

keeping a very tight control over time synchronisation.

Figure 1. Image fusion (such as layering the images produced by visible light and thermal cameras) has been popular in
industry for several years. Al/ML’s role is to make sense of the data for automated predictive maintenance purposes, for
example, and to perform object recognition (including the movement of personnel).



Also, while the underlying hardware may provide some security features, the edge device might
operate in a location where it is susceptible to tampering, data breaches and model theft.

Lastly, as the raison d'etre of edge processing is to have little if any reliance on the cloud, how
easy is it to test, debug and upgrade (or if necessary, rollback) products in the field? Unless post-
deployment considerations are factored in at the design stage, the edge device might have a very
short life in the field.

Return to Index A




The Flow

As readers will be aware, there is a logical flow (see Figure 2) taken by software
engineers once the hardware has been selected: and we must stress that it is

important for the software team to be involved in that selection.

Reiterate
and Refine

Model
Training

Quantisation and
Optimisation

Requirements
Definition

Choose or Build a
Suitable Model
Architecture

Evaluate the Model
on Edge Hardware

Package
and Deploy

Weight and
Structure Pruning

Figure 2: Developing a vision-based Al at the edge product requires following
a flow, noting that parts are iterative and steps back may need to be taken.

1. Requirements Definition

Identify the tasks (e.g., object detection and classification), specify constraints (e.g., latency, power,
memory and accuracy) and understand the strengths and weakness of the hardware. It is also
essential that post-deployment considerations be included at this stage.

2. Choose or Build a Suitable Model Architecture

If selecting, there are several open-source ones to choose from including YOLOv8-Nano (part of
the YOLOvV8 model family developed by Ultralytics, and with code and models publicly available
on GitHub) for detection. And for classification, an example model architecture is MobileNetV2,
developed by Google as part of its TensorFlow ecosystem.

*Tip*
Model selection should involve a review of licensing terms. For example, while a General Public License (GPL) is
common for most models, sometimes a GNU Affero GPL (AGPL) might be required. It is an extension to a standard GPL
and ensures that the source code of any modified software to be used over a network can be made available to users
interacting with it remotely. This means that if you modify your AGPL-licensed code (model) and run it as a service,
users of your service are entitled to receive the source code.

3. Model Training

High quality datasets should be used that represent the deployment environment and the data
should be augmented to train for conditions such as low-light and motion blur. Tip: to fast track the
development of your application use transfer learning, if possible - i.e., take a model trained on one
task and modify it to perform a different but related task.

4. Weight and Structure Pruning

Set low-importance weightsto zero and remove any unnecessary filters and neurons. These pruning
exercises will reduce model size/complexity and simplify computation tasks. However, be mindful
that pruning comes at the cost of system accuracy.



5. Quantisation and Optimisation

Having trained and pruned the model it is now time to start preparing for edge hardware.
Quantisation converts the model developed on a desktop machine at floating-point 32-bit
resolution (FP32) to FP16, 8-bit integer (INT8) or another low-precision format. Quantisation-aware
training (QAT) helps preserve accuracy. Also, now is the time to match the quantisation format with
hardware support. For instance, Coral Edge TPU requires 8-bit quantised input tensors. The model
is converted to the supported format of the target platform: e.g. OpenVINO IR (for Intel-based edge
devices), TFLite (Android, Edge TPU), TensorRT (NVIDIA Jetson) or ONNX (cross-platform).

6. Evaluate the Model on Edge Hardware

Test for inference latency, memory usage, power consumption and accuracy versus the original
model. Note: many vendor SDKs (e.g., NVIDIA Nsight, Intel VTune, Android Profiler) include useful
profiling tools.

7. Reiterate and Refine

If too much accuracy is lost or latency is too high, steps 3 to 6 should be repeated. Accuracy
improvement measures include adjusting pruning/quantisation parameters or using QAT (if not
used in the first pass). Or even start with a better base model. Latency can be shortened through
further pruning and quantising. Again, it's a balancing act between accuracy and speed.

8. Package and Deploy

As a minimum this involves bundling together the optimised model with the edge software stack.
Also, if the ability to update in the field is a requirement (which probably will), over the air (OTA)
updates must be enabled.

As mentioned, post-deployment considerations must be included as a part of the requirements
definition. These considerations include:

o Edge systems must maintain reliable performance under varying environmental and network
conditions. In addition, the pipeline (from image capture through to inference) may need to

accommodate varying image quality (resolution, frame rates and encoding, etc).
o Real-time monitoring, remote fault recoveryand OTA updates are ascritical asmodel optimisation.

o For safety-critical applications, such as industrial monitoring or human-machine interaction,
model integrity, data security, and update traceability must be built into the system from the
start, as the information needs to be readily throughout the system'’s life in the field.

Return to Index Aa




Hardware Considerations

When developing software for a vision-based Al at the edge system in addition to

understanding the functional requirements (objectives) it is important to appreciate

the underlying hardware as it will impose restrictions on the software stack.

Let's start by considering the top-level implications of using the different kinds of hardware. We wiill

look at each in detail shortly, but here is a brief comparison showing perhaps their main strengths

and weaknesses where vison-based Al at the edge is concerned.

Device

Description

Main Strength

Main Weakness

Graphics Processing Unit
(GPU)

Neural Processing Unit
(NPU)

Central Processing Unit
(CPU)

Digital Signal Processor
(DSP)

Field-Programmable Gate
Array (FPGA)

Microprocessor Unit
(MPU)

A highly parallel processor
designed for rapid image
rendering and data-
intensive tasks like deep
learning.

A dedicated Al accelerator
optimised for executing
neural network operations
efficiently.

A general-purpose
processor capable of
handling diverse computing
tasks including control logic
and OS management.

Optimised for real-time
signal processing tasks
such as filtering, FFTs, and
low-level vision algorithms.

A reconfigurable
hardware device that
can be programmed to
implement custom logic
for specific tasks.

A general-purpose
processor used in
embedded systems
and capable of running
operating systems and
managing complex
applications.

Excellent parallel
processing power for large-
scale Al inference.

Great performance and
energy efficiency for deep
learning inference tasks.

Versatile and essential for
managing system-level
operations and pre/post-
processing in Al pipelines.

Efficient for low-latency,
real-time signal processing
with low power usage.

High flexibility and
parallelism tailored to
application-specific
acceleration.

Supports full operating
systems and multitasking
in moderately resource-
constrained environments.

High power consumption
and thermal output,
making it less ideal for low-
power edge environments.

Limited flexibility.

NPUs primarily support
specific Al workloads and
lack general-purpose
capabilities.

Poor parallelism and
slower performance on
deep learning workloads
compared to dedicated
accelerators.

Limited performance on
modern deep learning
models and complex vision
tasks.

Complex to program and
optimise, with longer
development cycles
compared to fixed-
function accelerators.

Lacks native Al
acceleration.



Device

Description

Main Strength

Main Weakness

Microcontroller Unit
(MCU)

Tensor Processing Unit
(TPU)

A compact processor with
tightly integrated memory
and peripherals, designed
for simple control tasks in
embedded systems.

A specialised Al accelerator
developed by Google to
perform tensor operations
used in neural networks.

Ultra-low power
consumption and
simplicity for lightweight
edge devices.

High throughput and
energy efficiency for
running large neural
network inference
workloads.

Limited processing power
and memory for running
vision-based Al models.

Limited flexibility, with
support focused mainly on
TensorFlow and specific
model architectures.

Above, only one strength and one weakness was shown for each type of hardware. The following
sections go into more detail, plus we discuss the software stacks, programming languages and
frameworks. Alternatively, you can skip these sections and go straight to Vision-Ready SOMs.

Return to Index A




GPU

Vision-based Al at the edge relies heavily on deep neural networks, especially
convolutional CNNs, which require large amounts of matrix and vector
computations. GPUs lends themselves well to CNN tasks thanks to their massive
parallel processing capabilities.

Specifically, they have thousands of cores that can perform operations in parallel, accelerating
inference workloads significantly. This makes them ideal for handling the computational workload
of deep learning tasks.

GPUs exhibit low latency, low enough to support real-time inference and for processing high-
resolution video streams and are well supported by major Al frameworks (TensorFlow, PyTorch,
ONNXx etc.) and many edge Al SDKs have optimised software stacks for GPU acceleration.

GPU Software Stack Strengths
o Optimised Al Frameworks. For example, TensorRT, cuDNN and DeepStream SDKs enable efficient

deployment of DNNs with quantisation, pruning and layer fusion.

o Containerised Environments. Tools like Docker and NVIDIA NGC make it easy to deploy consistent
environments at the edge.

o Hardware-Software Integration. Tight integration between hardware (Jetson Xavier, Orin, etc.)
and software (JetPack SDK) enables full utilisation of GPU capabilities.

o Model Optimisation. Support for FP16/INT8 quantisation and pruning to improve performance

while reducing memory footprint.

o Ecosystem and Community. Strong developer support, documentation, and ecosystem around
NVIDIA and CUDA-based stacks.

GPU Software Stack Weaknesses
o Portability Issues. Models optimised for GPUs (using TensorRT, CUDA) are often not portable

across non-NVIDIA hardware.

o High Complexity. Full deployment pipelines (training, conversion, optimisation, deployment) are
complex and require specialised knowledge.

o Limited Framework Support. Not all new model architectures are supported out of the box by
TensorRT or other GPU inference tools.

o Integration Overhead. Integrating GPU inference into embedded systems may require custom

drivers, tuning and/or middleware.




GPU Programming Languages

Language Usage Pros Cons
CUDA Core language for Full control over GPU Steep learning curve.
(C/C++) programming NVIDIA memory and kernels. Vendor lock-in (NVIDIA
GPUs. Maximum performance. only). Complex debugging
and profiling.
Python High-level Al development. Easy and fast prototyping. Slower than C++ in real-

(via PyTorch, TensorFlow)

OpenCL
(C-based)

C++

Rust

GPU usage abstracted via
backends (CUDA/cuDNN).

Portable parallel
programming across

vendors (NVIDIA, AMD, Intel).

Often used for deploying
optimised applications
with TensorRT or OpenCV.

Emerging as an Al
language, and attractive
for applications where
there is a safety focus.

Large community and
support.

Cross-vendor compatibility.

High performance and
low-level control.

Comparable to C/C++ but
considered safer. Great
for low-latency, high-
throughput workloads.

Example Frameworks for Vision-Based Al at the Edge on GPUs

Framework

Use Case

Pros

time inference. Less control
over low-level optimisation.

Less optimised than CUDA
on NVIDIA GPUs.

Verbose and requires more
development time than
Python.

Steep learning curve. Small

(but growing) ecosystem
and community.

Cons

NVIDIA JetPack SDK

TensorRT

DeepStream SDK

PyTorch + TorchScript

TensorFlow Lite + GPU
Delegate

ONNX Runtime (with
TensorRT backend)

OpenCV + CUDA Modules

Full-stack edge Al on
Jetson.

High-performance
inference.

Video analytics at the edge.

Training and deployment.

Mobile and edge inference.

Inference across devices.

Vision pre/post-processing.

Optimised for Jetson.
Integrated CUDA/cUDNN/
TensorRT.

Fast inference. Supports
quantisation (INT8/FP16).
ONNX model import.

High throughput.
Optimised pipelines.
GStreamer integration.

Easy to use. Export to
ONNX. GPU acceleration
via CUDA.

Small binary size. Cross
platform.

Converts PyTorch/
TensorFlow models. Runs
on GPU (via TensorRT).

Real-time image
processing. Runs on GPU.

NVIDIA-only. Steep
learning curve.

Complicated API. NVIDIA-
only.

Complex configuration.
Limited flexibility.

Slower than TensorRT.
More RAM needed.

GPU support weaker than
NVIDIA stack.

Compatibility issues with
custom operations.

Not Al-specific. Manual
optimisation needed.



To accelerate the development of Al-enabled applications some GPU vendors offer a great deal of
support. Worthy of particular note is NVIDIA's CUDA-X Al (see Figure 3), a complete deep learning
programming model and software stack for researchers and software developers to build high

performance GPU-accelerated applications for, amongst other things, computer vision.

TRAINING

1|E?

Training
Data

s
2
Caffe2 cpainer

S ..o

Model Assessment

icrosoft
Cognilive

Toalkit
ifhxnet

Data Management

44 PaddlePaddle

Q:-.g;p
ay

Qs o
o/.- ©

Trained Neural
Network

O PyTorch +

TensorFlow

————

INFERENCE

Data center TensorRT
IR ® (=)
-—
Embedded JETPACK SDK
Automotive DriveWorks SDK

NVIDIA DEEP LEARNING SDK and CUDA

NCCL
R e

cuSPARSE

TensorRT

‘—1':—@?
Ll: b

DeepStream SDK

-

Figure 3. Built on CUDA-X, NVIDIA’s unified programming model provides a way to develop deep learning applications on
the desktop or data centre, and deploy them to resource-constrained loT devices. Source https.//developer.nvidia.com/deep-

learning-software

Note:

Also worthy of note - but something the hardware team should already be aware of - is that not all GPUs include
dedicated hardware coders/decoders (CODECs). Most NVIDIA GPUs do: their CODECs are called NVENC and NVDEC).
If dedicated hardware CODECs are not present within the selected GPU this will impact the ability to record or stream
video directly from the device - e.g.,, inference plus digital video record (DVR) functions. The knock-on effect of poor
hardware choice can lead to increased latency, excessive CPU load and reduced power efficiency.

Return to Index AA




NPU

NPUs are proving increasingly popular in vision-based Al at the edge
applications such as drones, autonomous vehicles and smart sensors. They are
optimised for matrix and tensor operations (core to neural networks) and boast
high throughput and low power consumption.

They are good at parallelismm and can process multiple computations concurrently, which is vital for
CNNSs. In addition, NPUs are low latency and can be used for real-time inference, essential for object
detection, face recognition and autonomous navigation, for example. They are energy efficient, too,
so are ideal if there is a tight power budget.

NPU Software Stack Strengths

These include the fact that many NPUs come with optimised Al libraries - from vendors like
Qualcomm, Google, ARM and Intel, for instance —that provide pre-compiled operations, quantisation
tools and compilers to boost performance. Most NPUs also support popular ML frameworks and
software stacks often include tools for 8-bit or mixed-precision quantisation, pruning and layer
fusion.

NPU Software Stack Weaknesses

These include a steep learning curve and the fact that SDKs and compilers are often vendor specific
(limiting portability). Also, debugging and profiling tools are not as mature as they are for CPUs and
GPUs. The issue to really watch out for though is that (bizarrely) not all neural network operations
are supported by NPUs - and CPUs often have to pick on tasks like dynamic flow control and
complex tensor operations, for instance. Accordingly, when looking for models to run on an NPU,
and the intended operations, it is important to confirm which layers are fully accelerated and which
revert to CPU execution. Workloads that require lots of back and forth between NPU and CPU will
compromise performance, particularly real time.

NPU Programming Languages

Language Pros Cons
Python Easy to use, high-level and well- Not used directly on-device
supported. (converted to lower-level formats).
C/C++ Fast and close to hardware. Complex memory management and
harder to debug.
Embedded C Minimal footprint. Tight control Very low-level and error prone.
OpenCL /CUDA High performance, parallelism. Complex, not universal across all NPUs.

Vendor-specific DSLs / APIs
(e.g. Hexagon NN API [Qualcomm])

Direct control over NPU execution.

Non-portable across devices.
Steep learning curve and limited
community support.



Example Frameworks for Vision-Based Al at the Edge on NPUs

Framework

Target NPUs

Pros

Cons

TensorFlow Lite

ONNX Runtime

OpenVINO

SNPE (Qualcomm)

MediaTek NeuroPilot

NVIDIA TensorRT (Jetson)

Return to Index An

Many (e.g., Coral Edge TPU,
Android NNAPI).

Qualcomm SNPE, Intel
OpenVINO, Rockchip, etc.

Intel Myriad X.

Hexagon DSP + NPU
(Snapdragon).

MediaTek NPUs.

NVIDIA NPUs (DLA), GPUs.

Lightweight, TFLite models
can be accelerated via
NNAPI or vendor delegates.

Interoperable with many
frameworks as ONNX
exports from PyTorch/
TensorFlow.

Optimised for Intel
hardware and there is a
good computer vision
toolchain.

Tight integration with
Qualcomm chipsets and
efficient.

Integrates with Android
NNAPI and TensorFlow
Lite.

Extremely optimised.
Deep TensorFlow/PyTorch
support.

Limited flexibility, and
conversion is required.

NPU support often via
custom backends.

Intel-specific.

Proprietary with limited
documentation.

Android-focused and there
is limited documentation
publicly available.

Not usable on non-NVIDIA
hardware.




CPU

Despite the rise of dedicated ICs that are geared for edge Al and especially
vision-based applications, CPUs remain very popular. They are available as
standalone devices (e.g. Intel Core i7, AMD EPYC) and are embedded into MPUs,
MCUs and system-on-chip (SoC) devices such as Apple M1 and Raspberry Pi
BCM2711.

CPUs handle general-purpose tasks well — offering a low/medium level of inference and pre-/
post-processing capabilities - and they are flexible with good support for frameworks, libraries
and languages. Not surprisingly, they have a very mature ecosystem with good compiler support,
toolchains, debugging tools, SDK availability and OS-level support (e.g., Linux and RTOS).

However, CPUs (even multicore devices) have limited parallelism compared to GPUs and FPGAs,
which limits throughput for deep learning inference. CPUs can also suffer from latency issues due
to non-deterministic scheduling, even if they are multicore devices. Real-time kernels should be
considered for time-critical inference.

CPU Software Stack Strengths

o Wide software support. Most Al/ML frameworks support CPU backends (TensorFlow, PyTorch,
OpenCV, ONNX, etc.).

o Rich OS-level services. You can run full Linux distributions with networking, file systems, security, etc.
o Optimisation toolchains. Compilers like LLVM, GCC and Al accelerators like OpenVINO (Intel) or

ARM Compute Library exist to optimise inference.

CPU Software Stack Weaknesses
o Less optimised for Al. Many Al frameworks prioritise GPU/NPU backends. CPU support is

improving, but still slower.

o Software bloat. Full OS stacks can be heavyweight, which is not ideal for low-latency, real-time

use unless carefully trimmed.

o Real-time constraints. Vanilla CPUs with general operating systems (e.g., Linux) aren’t real-time
unless customised (e.g., using PREEMPT_RT patches).




CPU Programming Languages

Language Pros Cons

C/C++ High performance, close to hardware Complex memory management,
and widely supported. slower development (potentially with

lots of bug hunting).

Python Easy to read/write. Fast development. Slower execution. May need bindings
Huge ML ecosystem (TensorFlow, (e.g., with C++) for performance.
PyTorch).

Rust Memory safety without garbage Steep learning curve. A small but
collection. Good performance. growing ecosystem.
Increasingly popular for embedded.

Assembly Max control and efficiency. Extremely low-level. Rarely used unless

optimising certain critical paths.

Example Frameworks for Vision-Based Al at the Edge on CPUs

Framework

Language

Pros

Cons

OpenCV
(Vision processing library)

ONNX Runtime
(Inference engine for
ONNX models)

TensorFlow Lite
(Lightweight ML
framework)

PyTorch Mobile /
TorchScript
(ML frameworks)

Intel OpenVINO
Optimised inference toolkit
(Intel CPUs/VPUs)

ARM Compute Library
(Low-level optimised
routines for ARM CPUs)

Return to Index A

C++ (bindings for Python,
Java, etc.)

C++, Python, C#

C++, Python

C++, Python

C++, Python

C++

Excellent for image pre/
post-processing. Widely

supported and lightweight.

Integrates with DNN
modules.

Lightweight and portable
across hardware.
Optimised CPU backends.
Supports quantised
models.

Optimised for mobile/edge.

Good CPU performance
with quantisation.

Easier for developers
already using PyTorch.
Scripted models can run
on CPU.

Highly optimised for
Intel CPUs. Post-training
guantisation, model
optimisation. Supports
OpenCV integration.

High performance on
ARM-based devices (e.g.,
Raspberry Pi). Optimised
convolution and maths
operations.

Direct DNN support

is basic (compared to
PyTorch/TensorFlow).
Performance depends
heavily on hardware
optimisation.

No training support
(inference-only). Requires
conversion from PyTorch/
TF to ONNX.

Conversion from full
TensorFlow model can be
tricky. Less transparent
debugging.

Less optimised than TFLite
for small CPUs. Python
dependency unless fully
scripted.

Intel only, for best
performance. Steep
learning curve.

No high-level API (just
building blocks). Steeper
development effort.



DSP

These are also commonly used in vision-based Al at the edge applications. Their
strengths include low latency (making them suitable for real-time vision tasks)
and their on-chip memory and parallelism.

They are optimised for specific operations (such as convolution and FFT), making them very power
efficient and, asis implicit in the name, signal processing: because they have native instruction sets
for matrixand vector operations. This last aspect makes them good at filtering,image enhancement,
feature extraction and other key vision tasks.

DSPs are less general purpose than CPUs and GPUs, and deliver lower peak performmance than the
latter, though that might only be an issue if the application has massively parallel workloads (such
as training a deep network). Also, DSPs in vision tasks depend on low-overhead transfer of data
between accelerators. Unless memory bandwidth and DMA are correctly configured, bottlenecks
might occur for some operations. Not surprisingly, as something of a specialist device, the DSP
developer ecosystem is smaller.

DSP Software Stack Strengths
o Highly Optimised Libraries. Vendors like Qualcomm, Tl and Cadence provide optimised libraries

(e.g., Hexagon NN, Tl Deep Learning [TIDL] and HiFi DSP SDK).

o RTOS Integration. DSPs are often used with an RTOS, making them ideal for deterministic

applications.

o Tight Integration with SoCs. DSPs are often embedded - along with CPUs, NPUs and image
signal processors (ISPs) - in heterogeneous SoCs, making cross-processing much easier via
vendor SDKs.

DSP Software Stack Weaknesses
o Proprietary Toolchains. Many DSPs require vendor-specific compilers and toolchains (e.g.,

Qualcomm’s Hexagon SDK, TI Code Composer Studio), which can be limiting.

o Limited Framework Compatibility. TensorFlow Lite and ONNX often need custom conversion

paths to run on DSPs.

o Manual Optimisation. Developers sometimes need to hand-optimise key routines using DSP

intrinsics or assembly.

o Debugging is Harder. Debugging and profiling tools are less advanced compared to those for
CPUs and GPUs, for instance.




DSP Programming Languages

Language

Pros

Cons

C/C++

Python (via conversion)

Assembly (DSP-specific)

Widely supported, low-level control
and optimised libraries are available.

Used for model development.
Compatible with TensorFlow Lite or
ONNX

Maximum performance. Fine-grained
control.

Manual memory management.
Harder to debug.

Not used directly on the device.
Needs conversion to C/C++ or vendor
intermediate representation.

Tedious and error prone. Not
portable.

Example Frameworks for Vision-Based Al at the Edge on DSPs

Framework

Vendor

Pros

Cons

Hexagon NN /SNPE

TIDL
(Tl Deep Learning Library)

HiFi DSP SDK

TensorFlow Lite Micro

ONNX Runtime
(custom backends)

Return to Index Aa

Qualcomm

Texas Instruments

Cadence

Various

Various

Optimised for Al on
Hexagon DSPs. Supports

TFLite and ONNX models.

Supports vision models.
Integrated with Tl SoCs.

Audio and vision
optimised. Good for low-
power apps.

Open source. Can be
ported to DSPs.

Interoperable format.
Supports conversion
pipelines.

Proprietary. Limited
flexibility.

Complex build setup.
Limited model support.

Niche use cases. Requires
licensing.

Needs custom kernels.
Limited performance
without tuning.

Backend tuning is
required. Not always plug-
and-play.




FPGA

As mentioned, GPUs can perform thousands of operations in parallel and are
low latency (sufficiently low for real-time). FPGAs, which have configurable logic
blocks (see figure 4), tick these boxes too and are ideal for vision tasks such as
object detection, classification and segmentation (all of which often involve
parallel operations on pixels or regions).

DSPs
Logic Element

.—if_. =
1-bit configurable  1-bit register
operation (store result)

S

H

..

-

data_out

WEEN/

\HEEERN

data_out

data_in

|
=——— W |

Logic Elements are
surrounded with a
flexible interconnect

Figure 4. FPGAs contain configurable logic elements. Some also contain DSP blocks, useful for dot-product calculations (a
fundamental operation in linear algebra that is widely used in areas like ML and computer graphics). Source Edge Al + Vision
Alliance. https.//www.edge-ai-vision.com/2016/08/fpgas-for-deep-learning-based-vision-processing/

Unlike GPUs, which may have scheduling delays, FPGAs can not only deliver real-time performance,
but they are also deterministic, making them perfect for safety-critical applications. FPGAs can be
very energy efficient for certain workloads because they don't carry general computing overhead.
Specifically, the internal hardware (logic gates and look up tables, LUTs) can be configured for the
dataflow of a neural network model, including optimised pipelines, quantisation and even pruned
models.

However, depending on the application, long-term maintainability may need to be factored in, and
may rule out the use of an FPGA. Specifically, whilst performance is deterministic, FPGAs might not
be the best solution if the application is to have frequent model updates.

DSP Software Stack Strengths
o Highly Optimised Libraries. Vendors like Qualcomm, Tl and Cadence provide optimised libraries

(e.g., Hexagon NN, Tl Deep Learning [TIDL] and HiFi DSP SDK).

o RTOS Integration. DSPs are often used with an RTOS, making them ideal for deterministic

applications.

o Tight Integration with SoCs. DSPs are often embedded - along with CPUs, NPUs and image
signal processors (ISPs) - in heterogeneous SoCs, making cross-processing much easier via
vendor SDKs.



DSP Software Stack Weaknesses

o Proprietary Toolchains. Many DSPs require vendor-specific compilers and toolchains (e.g,

Qualcomm’s Hexagon SDK, Tl Code Composer Studio), which can be limiting.

o Limited Framework Compatibility. TensorFlow Lite and ONNX often need custom conversion

paths to run on DSPs.

o Manual Optimisation. Developers sometimes need to hand-optimise key routines using DSP

intrinsics or assembly.

o Debugging is Harder. Debugging and profiling tools are less advanced compared to those for
CPUs and GPUs, for instance.

FPCA Programming Languages

Language

Description

Pros

Cons

VHDL / Verilog

SystemVerilog
High-Level Synthesis (HLS)
(e.g., C/C++, OpenCL)

Python
(via tools like PYNQ)

Low-level Hardware
Description Languages
(HDLs).

Modern HDL with object-
oriented features.

C/C++ code compiled to
hardware logic.

Python wrapper for FPCA
APIs (mainly for Xilinx
boards).

Full control. Efficient/
mature toolchain.

Better modularity than

Verilog/VHDL.

Faster development. Easier
for software engineers.

Easy prototyping,
accessible.

Example Frameworks for Vision-Based Al at the Edge on FPGAs

Framework

Languages

Pros

Steep learning curve,
verbose and error prone.

Still requires deep
hardware knowledge.

Often less efficient than
handcrafted HDL.

Not for low-level hardware
development.

Cons

OpenCL for FPGAs
(multiple vendors)

Xilinx Vitis Al
(for Xilinx FPGAs such as
Zyng and Versal)

Intel OpenVINO + FPCA
Plugin (for Intel FPGAs
such as Arria and Stratix)

Return to Index Aa

OpenCL C (based on
C99 subset), C/C++ with
OpenCL API

Python (for API), C++, HLS,
VHDL

C++, OpenCL

Cross-platform (with
some caveats) and high-
level programming for
parallelism.

Pre-optimised Deep-
Learning Processing Unit
(DPU) for CNNs. Powerful
profiling tools.

Runs OpenVINO models
on FPCGAs. Pre-compiled
bitstreams for some
networks. Easy deployment
from trained models.

Performance varies. Long
compile times. Less control
than HDL.

Steep learning curve for
full toolchain. Tied to Xilinx
hardware.

Less customisation of
hardware logic.




MPU

Microprocessors are commonly used for vision-based Al at the edge due to their
balance of computational capability, flexibility and software support.

Relative to their cost, they offer great performance (especially devices with 32- or 64-bit cores such
as Arm Cortex-A) compared to CPUs. They also support Linux-based OSes (e.g., Yocto Linux and
Ubuntu Core), which enable complex software stacks, computer vision libraries, and frameworks
like OpenCV and TensorFlow Lite. In addition, many modern MPUs integrate Al/ML accelerators or
GPUY/ISP blocks to handle intensive computer vision workloads.

Understandably, as such a popular embedded system device, MPUs typically have interfaces
for camera inputs (MIPI-CSI) that are crucial for vision systems. And many MPUs have real-time
capabilities for latency-sensitive vision tasks. However, when several cameras are connected, the
MPU's internal bus and memory architecture needs to be able to sustain the combined throughput
without frame drops or inference lag.

MPU Software Stack Strengths

o Rich OS environment: Linux on MPUs enables multitasking, multi-threading, containerisation

(e.g., Docker), and access to well-established software ecosystems.

o Broad Al framework support: TensorFlow Lite, ONNX Runtime, PyTorch (limited), and OpenCV

are natively supported or easily cross-compiled.

o Custom ML model deployment: MPUs often support tools for quantisation, pruning, and cross-

compilation of neural networks to run efficiently on-device.

o Good community and vendor support, especially for the most popular MPU devices.

MPU Software Stack Weaknesses
o Complex development: Building software for MPUs involves cross-compiling and managing

dependencies.

o Latency and power: While better than cloud, MPUs are not always optimal for real-time, ultra-

low-latency vision (a GPU or FPGAs might be better).

o Software fragmentation: Different vendors have different SDKs and toolchains (e.g., NXP's elQ

and TI's Edge Al SDK), which can cause portability issues.

o Security patching and updates: If the OS is embedded Linux, keeping it secure and up-t-date is
non-trivial, especially in long-lifecycle devices.




MPU Programming Languages

Language Use case Pros Cons

C/C++ Drivers, real-time Fast, good hardware Error prone. Not necessarily
components, OpenCV, control, widespread. the safest language to use.
GStreamer.

Python Rapid prototyping, Al Easy syntax, strong Al Slower and needs Python

Shell scripts (Bash)

Rust

Example Frameworks for Vision-Based Al at the Edge on MPUs

Framework

frameworks (TensorFlow
Lite, PyTorch), OpenCV
scripting.

System-level automation,
startup scripts.

Safe systems
programming.

Use case

ecosystem.

Lightweight, integrated
into Linux.

Memory safety,
performance.

Pros

runtime.

Not suitable for complex
logic

Smaller ecosystem,
learning curve.

Cons

OpenCV

TensorFlow Lite

ONNX Runtime

GStreamer

Vendor SDKs (e.g., NXP elQ,
Tl EdgeAl)

Return to Index Aa

Computer vision and
image processing.

ML inference.

Inference with various
backends.

Video pipeline
management.

HW-specific acceleration.

Open source and well-
documented.

Optimised for edge,
supports quantisation.
Interoperability across

frameworks.

Efficient streaming,
integration with OpenCV.

Uses built-in accelerators,
optimised.

Can be heavy on the MPU'’s
CPU.

Limited model support
compared to full

TensorFlow.

Less optimised for all
hardware.

Complex to configure.

Vendor lock-in. Steep
learning curve.




MCU

Microcontrollers are increasingly being used for vision-based Al at the edge
due to their low power consumption, small footprint, and increasingly capable
hardware (which offers real-time responses).

However, they have limited compute power - so the inference must be highly optimised - and
limited RAM and Flash memory, limiting model size, input resolution and image buffers. MCUs can
also suffer limited 1/O bandwidth.

Despite these limitations, MCUs are still capable of being used in basic vision-based Al at the edge
applications such as object recognition, gesture recognition, bar code / QR code reading, and
industrial monitoring (e.g. defect detection).

Note:
MCU-based systems should have lightweight update mechanisms and memory-efficient model deployment to allow
field maintenance.

MCU Software Stack Strengths

o Deterministic behaviour thanks to minimal software layers.

o Using an RTOS or going bare metal gives fine-grained control over scheduling and power

management.

MCU Software Stack Weaknesses
o This is low-level development work that requires in-depth knowledge of hardware (e.g. register-

level programming, direct memory access [DMA] and interrupts).

o The stack needs to be optimised by hand for core functions such as single instruction, multiple
data (SIMD).

o Limited framework support, compared to Linux or Android environments, and therefore less

compatibility with mainstream Al/ML frameworks.




MCU Programming Languages

Language Pros Cons

C Extremely efficient (in terms of Verbose and error prone (memory
performance versus memory), safety, buffer overflows). Poor
ubiquitous in embedded abstraction for complex Al logic.
environments, full control of memory
and hardware.

C++ Adds object oriented, templates, and Feature-heavy (template

MicroPython / CircuitPython

Rust

some abstraction over C. Still highly
efficient.

Much easier and faster for
prototyping.

Memory safety without garbage
collection. High performance with
modern tooling.

metaprogramming, RTTI) can bloat
code if not used carefully. Limited
library ecosystem compared to
desktop/server C++.

High memory overhead. Very limited
support for Al inference on vision
data.

Steep learning curve. Toolchain and
ecosystem for embedded are still
maturing.

Example Frameworks for Vision-Based Al at the Edge on MCUs

Language

Pros

TensorFlow Lite for Microcontrollers
(TFLM)

CMSIS-NN (Arm Cortex-M CPUs)

Edge Impulse

NNoM

Return to Index Aa

Designed specifically for MCUs (no
dynamic memory allocation), good
support for quantised models (INT8)
and good community support.

Highly optimised NN kernels for Arm
Cortex-M. Works well with TFLM for
efficient inference.

Web-based platform for data
collection, training, and deployment
to MCUs. Supports TFLM backend.
Great for rapid prototyping and
deployment

Lightweight NN inference library for
MCUs. Fully written in C.

Limited operator support (e.g.,

no support for large or complex
layers), it lacks model training
(must use pre-trained models from
TensorFlow), and model conversion
and optimisation can be tricky.

Only provides kernels (no model
compiler or graph representation),
low-level and harder to use alone.

Less flexible for custom models.
Requires cloud platform for training.
Not ideal for full control or proprietary
pipelines.

Not widely adopted. Less community
support and documentation.




TPU

Tensor Processing Units are specialised hardware accelerators designed by
Google primarily for accelerating machine learning workloads, particularly
those involving neural networks. In the context of vision-based Al at the edge,
TPUs are increasingly used because they offer a unique mix of power efficiency,
speed, and parallelism: which is critical when deploying Al models in edge
devices like cameras, drones, smartphones and |oT systems.

TPUs are optimised for the kinds of matrix operations that dominate vision tasks (e.g., convolutions
in CNNSs). Also, dedicated edge TPUs (e.g., Google's Coral TPU) are specifically designed for low-
latency inference on small, efficient models like MobileNet.

They can be embedded into tiny systems (e.g., Coral USB Accelerator) - making them ideal for
compact edge devices - and are particularly fast when working with 8-bit quantised models, which
are common in edge deployments to reduce memory and improve inference speed.

TPU Software Stack Strengths

Edge TPUs are tightly integrated with TensorFlow Lite, Google's lightweight framework for mobile
and embedded devices, and optimised TFLite models can be compiled directly using the Edge TPU
Compiler. Full support and documentation from Google make the development process smoother
if you stay within their toolchain, and integration with other Google tools (e.g., Colab and Cloud Al)
is seamless.

TPU Software Stack Weaknesses

Because TPUs are optimised for specific workloads and operations, custom layers or complex
architectures not supported (by the TPU) will need to be performed by a CPU or MPU, for example.
Edge TPUs only support a subset of TensorFlow operations. Also, only quantised (INT8) models
are supported, so additional steps like post-training quantisation or QAT, which can be complex,
are required. Precision loss fromm quantisation can degrade accuracy if not handled carefully.
Understandably, the software stack (Edge TPU Compiler, runtime, etc.) is tightly controlled by
Google, and there is less commmunity-driven support compared to more open platforms (e.g., NVIDIA
Jetson with PyTorch).

TPU Programming Languages

Language Usage Pros Cons

Python Main language for Easy to use. Supported by Less efficient for low-level
model development and TensorFlow, TFLite, and operations.
deployment. Edge TPU runtime.

C++ Used for custom High performance, low Steeper learning curve;
applications using TFLite overhead. more boilerplate.
C++ APlIs.

Shell (CLI) For compiling models with  Quick integration into Minimal logic possible.

Edge TPU Compiler.

deployment pipeline.



Example Frameworks for Vision-Based Al at the Edge on TPUs

Framework

Usage

Pros

Cons

TensorFlow +
TensorFlow Lite

PyTorch
(via ONNX - TFLite)

Edge TPU Runtime

Return to Index Aa

Primary framework for
training and deploying
models to TPUs.

Possible via conversion to
TFLite.

Required to execute
models on Edge TPU.

Excellent support (end-to-
end flow) with good tools
for quantization and model
optimisation.

Familiar syntax and a
strong community.

Fast and optimised.

Steep learning curve.

Conversion to TFLite may
break some operations,
and guantisation not as
mature.

Supports only a limited set
of models and operations.




Vision-Ready SOMs

Having discussed the above core hardware technologies let's consider commercially
available vision system on modules (vision-SOMs) that lend themselves well to

developing Al-enabled applications. Figure 5 shows an example.

Figure 5. Machine vision requires embedded systems that can analyse data on the spot and offer configurable sensor
capabilities. SOMs enable developers to take advantage of machine vision at scale while keeping costs low.
Source AMD: https.//www.amd.com/en/products/system-on-modules/what-is-a-som.html

The advantages of using a vision-ready SOM include:

o Lower risk. Developing custom hardware comes with significant risk such as hardware bugs,
power and thermal management issues and potential manufacturing defects. Also, the extent of
its compatibility with other systems might not be known until it is in the field. SOMs on the other
hand are field proven, tested for stability and often supported by their OEMs or third parties.

o Reduced development time. SOMs come pre-designed with a working processing ‘engine’ (be
it a GPU, MPU, DSP etc.), memory (RAM and ROM) and /O interfaces. This removes the need
to design and test complex hardware subsystems, allowing the project to focus on software
development and system integration. Vision-SOMs provide even more - specifically dedicated
pre-integrated camera interfaces (such as MIPI CSl or parallel interfaces) - reducing design effort

even further.

o Reduced certification burden. SOMs often carry regulatory pre-certifications (e.g., FCC, CE),
reducing the burden on your own product certification process. This is especially advantageous

for wireless-enabled modules or medical/industrial systems.

o Ecosystem and community support. Popular SOMs have active communities and support
channels, which speeds up troubleshooting and provides access to tutorials, libraries and

example code.

o Integrated Al acceleration for real-time inference. Many vision-SOMs (e.g., NVIDIA Jetson, Google
Coral, NXP i.MX 8M Plus SOMs) include Al/ML hardware accelerators for the core processing
engine (again, GPU, NPU or DSP, for example).

o Stack availability. Vision SOMs typically include or support Linux distributions (Yocto, Ubuntu,
etc.), Al SDKs (TensorRT, OpenCV, GStreamer, etc.) and pre-built drivers for vision peripherals. This
dramatically lowers software integration effort, especially for camera and sensor support.



o Modularity and scalability. SOMs can be easily upgraded (e.g., moving from a Jetson Nano to a
Jetson Xavier) while keeping the same baseboard. This allows for products to be scaled/upgraded
with minimal redesign effort but be mindful of starting off with too little or too much scope for

expansion. Also, you will of course be tied to the SOM'’s physical spec (including interfaces).

o Cost-effective for low- to mid-volumes. Vision-SOMs are very cost-effective at prototype and

production volumes under 10k units, where NRE costs of a custom PCB would be prohibitive.

A word of warning: SOM availability changes fast as, understandably, new products are being
launched to serve the growing market that is Al at the edge. Accordingly, developers must check
module lifecycles before anything is finalised.

Also, be mindful of the fact that SOM manufacturers vary massively in SDKand OS update schedules.
If the system you are developing will be deployed for a few years you need to be confident that there
will be long-term support for kernels and drivers. And it is recommended that your organisation/
team sets reminders to check if (or rather when) support will end.




Vison-Ready Al Computing Platform:
An Example

A step beyond using a vison-ready SOM is to use an industrial / edge Al platform.
The main advantage of doing so is that you start your project with a turnkey
solution: a validated hardware / software environment that drastically shortens
development time, improves reliability and performance for real-time vision at
the edge. Integration risk is lowered too.

So, what might a platform comprise? To best answer that, let's consider an example: Innodisk’s
APEX-X100 (see Figure 6). It is offered with an NVIDIA RTX 6000 Ada accelerator (18,176 CUDA cores,
568 Tensor cores, 142 RT cores; 48GB GDDR6) which gives large inference/fine-tuning headroom for
modern vision models and multimodal workloads. That's useful when you need high throughput
(multi-camera) or want to run larger models locally.

The APEX-X100 also comes with Intel 13th-Gen Core i7 or i9 options, up to 128GB (or more in some
variants) of DDR5and 512GB-1TB (or higher) NVMe pre-installed, all of which isideal for preprocessing,
batching and running auxiliary services.

Figure 6. The APEX-X100 is an industrial / edge Al computing platform designed to support demanding vision and compute
heavy workloads such as local model training, inference and fine tuning. 1 = the compute hardware. 2 = a DRAM module that
supports up to four Innodisk DDR5 4400 UDIMM modules. 3 = Flash storage (featuring an Innodisk industrial-grade M.2 4TG2-P
512GB SSD with a PCle Gen 4 x4 interface). 4 =an out-of-band remote management module. 5 = /O ports (specifically three
2.5Gbps LANs, a 10Gbps LAN, multiple high speed USB ports and various COM/DIO ports).
Source Innodisk. https./ivww.innodisk.com/en/edge-ai-systems/nvidia-solution/apex-x100



In terms of how the APEX-X100 might be used by software developers:

Model Selection, Deployment and Optimisation

o Models can be selected that take advantage of the GPU /Tensor cores. Example models include
YOLO (v7//8), Faster R CNN and Mask R CNN.

o Use frameworks and inference acceleration libraries such as NVIDIA's TensorRT, ONNX Runtime

with CUDA, cuDNN; possibly even model quantisation / pruning for faster inference.

o For fine tuning / training, you can ensure the model fits within the GPU memory.

Model Selection, Deployment and Optimisation

o Camera ingress. You'll need to connect cameras / vision sensors. The APEX X100 offers many
I/O options (USB, 10/2.5 GbE, etc). If you use MIPI or GMSL cameras, you might need additional

capture hardware or interface boards.

o Storage and data pipeline. Real time vision yields large amounts of data. Fast NVMe for buffering
or storing images/videos. Possibly RAID or external storage for archiving. Tip: use SSDs with

industrial grade durability for reliability.

o Networking / communication. Streaming video or sending inference results over a network
requires high bandwidth (10 Gbps or multiple 2.5 Gbps links) and reliable network stack. Edge
deployment may require remote management and monitoring (the APEX X100's OOB helps in

this respect).

Model Selection, Deployment and Optimisation

o OS / runtime environment. Your application could run on Windows IoT / Windows Server but
many vision/Al frameworks run better on Linux (e.g. PyTorch, TensorFlow, OpenCV, etc.) or

containers (which better support portability).

o Inference/training pipeline. Thisisfrom data ingestion (from cameras) through to pre-processing
(resizing, normalisation), batch or streaming inference, post processing, and visualisation and/or

alerting.

*Tl'p*
You should use the exact same number and types of cameras that will be used in the field, as the use of multiple high
bandwidth cameras will directly impact disk I/O and buffering.

o Edge/cloud syncing. If data logging or model retraining happens centrally, you may need to
sync data/models with the cloud or central servers. APEX X100 could act as a hode in a larger

distributed system.

o Security and maintenance. You need secure boot, OS updates, encrypted storage and be sure to
safe firmware/drivers. The remote / OOB management will help with maintaining and monitoring
health (especially if deployed in remote / harsh environments). Note: the OOB management
should be integrated into software workflows for monitoring and recovery, and not just hardware-
level control. Indeed, hardware-level control might not even be possible for some devices that

communicate over wired protocols such as Ethernet.

Return to Index Aa




Cameras

When selecting a camera for a vision-based Al at the edge application, there
are several critical factors to consider, and decisions made early on in the flow
will have direct implications on ease of integration, system performance, power
consumption and, ultimately, the success of the project.

Making those decisions is a system-level one and software engineers must be included to ensure
the chosen camera does not become a bottleneck during development or deployment. Also, in the
list that follows, not all points raised are of direct relevance to the project’s software engineers, but
we share them on the premise that there is no harm in raising awareness and presenting a broader
picture.

What to look for and why

o Resolution. Higher resolution means more detail but also more data to process, so choose a
resolution that matches the needs of your Al model (e.g., object detection may need less detail

than facial recognition).

o Frame Rate (FPS). Real-time applications (e.g., robotics, surveillance) may require 30 FPS or higher
whereas slower frame rates might suffice for static or periodic tasks (e.g., industrial inspection).

o Frame Synchronisation and Spatial Calibration. These are vital for accurate detection/tracking in

multi-camera system.

o Interface and Connectivity. Options include USB, MIPI CSl and Ethernet - but the choice may be

driven by the edge hardware - and you should consider bandwidth and driver support.

o Sensor Type. CMOS is the most common type as it is faster and more power-efficient than CCD.
As for colour (RGB) vs monochrome, the latter performs better in low light and offers higher

contrast for certain Al tasks.

o Lens and Field of View (FoV). Understandably, wide-angle is best for monitoring or tracking and
narrow FoV is better for detail or distance work. Subject variability will govern whether you opt
for fixed- or auto-focus. Note: Camera housings and mounting should also be evaluated for the

deployment environment.

o Lighting Conditions. These will drive the camera’s requirements in terms of low-light sensitivity,
IR capability (for night vision) or HDR support for high-contrast scenes. Also, some edge cameras
support global shutter for fast-moving objects.

o Driver and Software Support. Check the availability of drivers for your edge platform (Linux,
Android, etc.) as well as support for GStreamer, OpenCV and Al SDKs (NVIDIA Jetson, OpenVINO,

etc.), for example.




Camera selection

The inclusion of software engineers in camera selection is a must. It ensures the selected camera
interfaces properly with the platform, Al frameworks (e.g., TensorFlow Lite, PyTorch),and drivers. Also,
the camera’s output directly affects inference performance and memory usage, and when it comes
to prototyping it will be the software engineers that will be largely responsible for investigating any
frame drops, latency issues or poor image quality.

In terms of ensuring maintainability, there is a strong argument for standardised camera modules
(an example of which is shown in Figure 7).

Figure 7. Above, Innodisk’s EVBU-LSM-RLCF is a USB 2.0 8MP resolution, 30fps fixed focus camera module with OS support for
Windows, Linux and Android. It can be used in low light conditions thanks to an integrated image signal processor (ISP)
Source: https://www.innodisk.com/en/products/camera/usb-20/ev8u-lsmi-ricf

Return to Index aAa




Customisation

Whilst we extolled the benefits of going down the SOM or vision-ready Al
platform route, customisation almost always becomes necessary to align
the hardware, software, and deployment environment with the specific

requirements of your use case. Most if not all of the customisation you

will be doing yourself, so please note the following...

Pitfalls to avoid:

(o]

Underestimating Integration Complexity. Hardware and software stacks (e.g., camera SDKs
+ inference runtime) can conflict. Also, while early proof-of-concept systems may work fine,
scaling to production often exposes bottlenecks (which is why, above, we recommmend using end

application cameras in their intended quantities).

Thermal or Power Issues. Many teams forget to test under sustained load, causing throttling or

brownouts.

Portability. Choosing accelerators or SDKs with limited cross-platform support can trap you.

Ensure your models and code are portable.

Insufficient Lifecycle Planning. Industrial deployments often need 5-10 years of component
availability and sectors such as medical, possibly longer. Pick components (storage, GPU, NIC)
with known lifecycle commitments. Note, Innodisk has an excellent reputation in this respect,

and it certainly an area in which Simms offers value (see later).

Overlooking Maintenance and Updates. Again, we have already mentioned that the first day of
deployment is just the start on the vision-based, Al-enabled system’s life at the edge. Devices
need secure, remote OTA updates. Overlooking this will almost certainly lead to operational pain

later.

Poor Dataset Fit. Again, when we discussed the flow, we stressed that edge environments can
differ in lighting, motion blur, or camera angles. You may need to use custom datasets and on-

site fine-tuning to assure robust performance.

However, even if your team has good, all-round engineering and Al/ML skills, outsourcing some

parts of the customisation often makes sense. Reasons include faster time to market; help with

meeting regulatory and reliability compliance requirements; increasing your confidence in your

ability to assure your customers that lifecycle management and long-term support are available;

and help with ruggedising your system for life in a harsh environment (for example, SSD endurance

through power-loss protection).




Where Innodisk adds value:

(¢]

Hardware and Firmware Co-Design. Deep control of SSD firmware, DRAM validation,and industrial
motherboards. Innodisk can optimise 1/O throughput and storage performance specifically for
your Al vision workload. The OEM can also personalise your system’s BIOs for unique usage and

increase system efficiency.

Vision-Ready Platform Experience (APEX Series). Already integrated with NVIDIA/Qualcomm
accelerators, so custom thermal and power tuning is streamlined. Ready for industrial edge
environments — rugged, compact, and stable.

Turnkey Integration and Validation. Innodisk can test your Al model on their hardware, check

compatibility, and ensure long-term stability.

Lifecycle and Supply Chain Stability. As an industrial supplier, Innodisk manages long-term
availability and batch consistency, unlike vendors largely focussed on supplying consumer
hardware.

Return to Index A




Why Simms?
We can help accelerate your vision-based Al at the Edge project

In this white paper we have provided a wealth of information - not only offering advice but also
warning of pitfalls — to help you fasttrack the development of your project. Further acceleration can
be achieved through establishing good relationships with key suppliers, particularly distributors that
not only provide good technical support themselves but also have direct access to the specialists
within the OEM organisations they represent.

If you are developing a vision-based Al at the edge system around a core processing device (and we
have discussed many types in this white paper) you will also need industrial-grade memory (RAM
and NVM) and embedded peripherals, cameras as a minimum. You will probably need SDKs and
prototyping boards too.

Alternatively, and as stressed above, vison-ready SOMs and Al computing platforms boast many
benefits, not the least of which is a shorter time to market. It is essential to select the most
appropriate SOM or platform for not only your immediate project but also your long-term objectives:
for example, IP re-use on subsequent projects. And as emphasised throughout this paper, if the
underlying hardware wrong (incorrectly selected), many software-controlled functions might be
constrained, and overall performance compromised.

Simms can help you make the right choices and supply the hardware plus any support you need
to accelerate your project. Indeed, the company brings deep technical expertise, helping you align
your software architecture and performance goals with the optimal hardware configuration.

As a specialist distributor, Simms bridges the gap between developers, system architects and world-
leading manufacturers such as Innodisk. The company connects software innovators (like you)
who are building vision-based Al at the edge with the hardware platforms that make their vision a
reality; thus helping them move as fast as possible from concept to deployment: with solutions that
are reliable, scalable and ready for industrial environments.

Importantly, Simms works collaboratively and in a structured flow, that begins with developing a
clear understanding of the application and workload. From there, Simms matches the intended
software environment (including models) to the most suitable compute, memory, and storage
technologies to accelerate development and de-risk deployment.

In essence, Simms is far more than a distributor. When you engage with the company you benefit

from a sound bridge between intelligent software and industrial-grade hardware, backed by long-
standing vendor relationships and decades of embedded experience.

Return to Index Aa




Our partner Innodisk

Selecting the right compute module is only one
part of delivering a robust vision-Al edge system.

Real-world deployments depend heavily on how well the surrounding hardware performs over
time: the endurance of storage under constant data ingest, the stability of DRAM under sustained
inference loads, the consistency of component behaviour across production batches and the ease
with which devices can be maintained in the field. This is where Innodisk excels.

Industrial Memory for Al Workloads

Unlike consumer or enterprise SSD vendors, Innodisk engineers the firmware, NAND selection, and
controller behaviour around the realities of edge vision systems. Models are cached and updated
frequently; cameras continuously generate high-write workloads; local logs accumulate; inference
pipelines generate random access patterns. Innodisk SSDs are optimised for these patterns and
incorporate features such as power-loss protection, advanced wear-levelling and configurable over-
provisioning, ensuring inference pipelines remain stable as systems age.

Validated DRAM for Sustained Compute

Al inference on GPUs, NPUs or accelerators often exposes weak points in memory design—
temperature drift, timing errors, or unpredictable throttle events. Innodisk’s industrial DRAM
modules are validated in wide operating temperature ranges and under non-stop load conditions,
reducing the “silent” instability issues that can derail edge Al projects and are notoriously difficult
to diagnose at the application layer.

Vision-Ready Platforms, Not Just Components

Innodisk’s APEX series represents a step beyond discrete memory and storage. These platforms
give development teams a pre-validated environment where GPU acceleration, DDR5 capacity,
PCle storage, cooling, and remote management have already been engineered to work together.
This avoids the integration trap many teams face - where individually excellent components
underperform when put into a 24/7, multi-camera deployment.

Deployment, Recovery and Lifecycle

Edge Al systems often operate in locations that are inaccessible or mission critical. Innodisk’s out-of-
band management modules allow devices to be recovered, updated, or re-imaged without OS-level
access. Combined with long-term component availability and strict batch-to-batch consistency, this
gives engineering teams confidence that prototypes will behave the same as production hardware,
and that deployed units will remain supportable years later.

Simms + Innodisk = Faster, Safer Deployment

Through our relationship with Innodisk, Simms can bring you into direct contact with their
engineering teams. Thisincludes firmware tuning forendurance profiles, pre-deployment validation
of your Al workloads, platform-level customisation, and lifecycle planning. Rather than selecting
memory or compute in isolation, we help you align the behaviour of your models, data ingestion
pipeline and system architecture with the exact hardware that will support it for the duration of its
life in the field.

Return to Index An




Summary

There is a growing demand for vision-based Al at the edge system in virtually
every industry sector. In developing those systems, software engineers face
many challenges that can be made all the more difficult by the underlying
hardware.

Its strengths and weakness in relation to the software stack must be fully appreciated; and software
engineers must be involved in hardware selection if the project is to run on time and risks reduced.

In terms of fast tracking (and further reducing risk) SOMs and Al-ready platforms offer a compelling
abstraction layer between Al software and edge hardware, allowing software developers to focus on
high-level optimisation. Indeed, by leveraging SOMs / Al-ready platforms with built-in support for
neural accelerators, vision pipelines and robust SDKs, teams can prototype rapidly, scale efficiently
and deploy confidently in the field.

Lastly, do not overlook the considerable role the distributor of the underlying hardware can play in

accelerating your project. They can help with hardware selection, and they have direct contact with
the OEMSs, who in turn can assist and even customise solutions for you.

About the Authors

This white paper was written by Simms technical specialists.

Return to Index Aa




Useful Links

Edge Al + Vision Alliance.

A global industry partnership (100+ member companies) focused on edge Al + computer vision.
Supports product creators, offers education, market/technology-trends insight, and addresses
“bringing vision + Al to products” challenges.

o www.edge-ai-vision.com

EDGE Al Foundation.

A foundation dedicated to edge Al (including tinyML, embedded systems) covering hardware,
software, ecosystems, and deployment. Good fit when discussing “Al-ready modules” and

ecosystems.

o www.edgeaifoundation.org

SOM community and support resources:

NVIDIA Jetson (Nano, Xavier, Orin series):
NVIDIA Developer Forums (Jetson Subforum)
o forums.developer.nvidia.com/c/jetson-embedded-systems/70
JetsonHacks
o www.jetsonhacks.com

GitHub Projects

o www.github.com/dusty-nv/jetson-inference

Google Coral (Edge TPU SOMs):
Coral Community Forum

o www.coral.ai/lcommunity/

GitHub: Coral Dev Board / Edge TPU Examples

o www.github.com/google-coral

NXP i.MX 8M Plus SOMs (Toradex, Variscite, TechNexion, etc.):
NXP Community (MCU & i.MX forums)

o community.nxp.com

Toradex Developer Center

o developer.toradex.com

Variscite Forums and Wiki

o www.variwiki.com

TechNexion Community

o www.technexion.com

Raspberry Pi Compute Module (CM4/CM5) (often used for lightweight vision applications):
Raspberry Pi Forums

o forums.raspberrypi.com

Return to Index A



https://www.edge-ai-vision.com
https://www.edgeaifoundation.org
https://forums.developer.nvidia.com/c/jetson-embedded-systems/70
https://developers.google.com/coral
https://community.nxp.com
https://forums.raspberrypi.com
https://www.variwiki.com
https://www.jetsonhacks.com
https://www.github.com/google-coral
https://developer.toradex.com
https://www.technexion.com
https://www.github.com/dusty-nv/jetson-inference

simms

01622 852800
www.simms.co.uk/intelligent-solutions
sales@simmes.co.uk

Simms International
Northdown Close
Northdown Business Park
Ashford Road

Lenham

Kent

ME17 2DL



	1. Executive Summary

