
How to fast track the
development of vision-
based AI at the edge
Whitepaper

Abstract

As demand rises for real-time, intelligent vision applications from smart
factories to autonomous drones the need to deploy AI (and its subset ML) at the
edge has never been greater.

However, many software development teams face a steep learning curve when translating powerful
AI models into responsive, power-efficient edge solutions. The challenges lie not only in model
optimisation but also in navigating fragmented hardware ecosystems, achieving tight performance
goals and ensuring scalability from prototype to production.

This white paper addresses the core pain points software engineers encounter when bringing
vision-based AI to edge systems. Many of these pain points are as a result of the selected underlying
hardware, and we explore in detail the strengths and weaknesses of the software stacks depending
on which hardware is selected.

We also explore how adopting vision and AI-ready pre-validated platforms can dramatically
accelerate time-to-market, simplify development and de-risk deployment, citing Innodisk’s
APEX-X100 platform by way of example.

02

Index

04

06

08

10

13

15

17

19

21

23

25

27

29

31

33

35

37

38

Introduction

The Flow

Hardware Considerations

Software Stacks, Languages and Frameworks For:

Graphics Processing Unit (GPU)

Neural Processing Unit (NPU)

Central Processing Unit (CPU)

Digital Signal Processor (DSP)

Field-Programmable Gate Array (FPGA)

Microprocessor Unit (MPU)

Microcontroller Unit (MCU)

Tensor Processing Unit (TPU)

Vison-Ready SOMs

Vison-Ready AI Computing Platform: An Example

Cameras

Customisation

How Simms Can Help Accelerate your Vision-based AI at the Edge Project

Summary

Useful Links

03

The shift from cloud-centric artificial intelligence (AI) to the edge in vision-based
systems has numerous benefits, including fast (up to real-time) decision making
and enhanced privacy.

As for applications, there are many. For example, AI-enabled vision-based systems are appearing in
industrial automation and manufacturing, automotive and transportation, retail and smart stores,
agriculture, security and surveillance, aerospace and drones, and smart cities and homes.

For software engineers developing AI-enabled functionality the move to the edge introduces a
number of significant technical challenges. For instance, unlike cloud-based systems with virtually
unlimited resources, edge environments are heterogeneous, resource-constrained and often
difficult to scale. Also, there is the familiar backdrop of commercial pressure to be early (and ideally
first) to market with a high performance, reliable solution that serves a market need. Regulatory
compliance is almost always required too.

Most of the technical challenges software engineers face have their roots in hardware: and we
cannot stress this enough. For instance, depending on key performance requirements, vision-
based AI at the edge apps can run on a variety of hardware device types, each with their own
strength and weakness.

Devices with limited processing power and memory makes running deep learning models (such as
convolutional neural networks, CNNs) difficult without model optimisation, a task that falls squarely
with the project’s software engineers.

Many edge environments vary significantly, particularly those outdoors (e.g. variable / poor lighting),
there may also be motion-blur and, if the camera is on a moving platform, such as an autonomous
guided robot (AGR), angles will be changing all the time. The upshot: models trained in the lab may
underperform in the real world and, again, it is for the software engineer to find optimal solutions.

Another challenge is often data fusion, as some vision-based AI applications must work with
multiple vision/sensing techniques (see figure 1). GPS may also be required, all of which means
keeping a very tight control over time synchronisation.

Figure 1. Image fusion (such as layering the images produced by visible light and thermal cameras) has been popular in
industry for several years. AI/ML’s role is to make sense of the data for automated predictive maintenance purposes, for
example, and to perform object recognition (including the movement of personnel).

04

Introduction

Also, while the underlying hardware may provide some security features, the edge device might
operate in a location where it is susceptible to tampering, data breaches and model theft.

Lastly, as the raison d’etre of edge processing is to have little if any reliance on the cloud, how
easy is it to test, debug and upgrade (or if necessary, rollback) products in the field? Unless post-
deployment considerations are factored in at the design stage, the edge device might have a very
short life in the field.

Return to Index ^^

05

As readers will be aware, there is a logical flow (see Figure 2) taken by software
engineers once the hardware has been selected: and we must stress that it is
important for the software team to be involved in that selection.

Figure 2: Developing a vision-based AI at the edge product requires following
a flow, noting that parts are iterative and steps back may need to be taken.

06

The Flow

1 2 3 4 5 6 7 8

Requirements
Definition

Quantisation and
Optimisation

Reiterate
and Refine

Model
Training

Choose or Build a
Suitable Model

Architecture

Evaluate the Model
on Edge Hardware

Package
and Deploy

Weight and
Structure Pruning

1. Requirements Definition

2. Choose or Build a Suitable Model Architecture

3. Model Training

Identify the tasks (e.g., object detection and classification), specify constraints (e.g., latency, power,
memory and accuracy) and understand the strengths and weakness of the hardware. It is also
essential that post-deployment considerations be included at this stage.

If selecting, there are several open-source ones to choose from including YOLOv8-Nano (part of
the YOLOv8 model family developed by Ultralytics, and with code and models publicly available
on GitHub) for detection. And for classification, an example model architecture is MobileNetV2,
developed by Google as part of its TensorFlow ecosystem.

High quality datasets should be used that represent the deployment environment and the data
should be augmented to train for conditions such as low-light and motion blur. Tip: to fast track the
development of your application use transfer learning, if possible - i.e., take a model trained on one
task and modify it to perform a different but related task.

4. Weight and Structure Pruning

Set low-importance weights to zero and remove any unnecessary filters and neurons. These pruning
exercises will reduce model size/complexity and simplify computation tasks. However, be mindful
that pruning comes at the cost of system accuracy.

Tip
Model selection should involve a review of licensing terms. For example, while a General Public License (GPL) is
common for most models, sometimes a GNU Affero GPL (AGPL) might be required. It is an extension to a standard GPL
and ensures that the source code of any modified software to be used over a network can be made available to users
interacting with it remotely. This means that if you modify your AGPL-licensed code (model) and run it as a service,
users of your service are entitled to receive the source code.

07

6. Evaluate the Model on Edge Hardware

7. Reiterate and Refine

8. Package and Deploy

5. Quantisation and Optimisation

Test for inference latency, memory usage, power consumption and accuracy versus the original
model. Note: many vendor SDKs (e.g., NVIDIA Nsight, Intel VTune, Android Profiler) include useful
profiling tools.

If too much accuracy is lost or latency is too high, steps 3 to 6 should be repeated. Accuracy
improvement measures include adjusting pruning/quantisation parameters or using QAT (if not
used in the first pass). Or even start with a better base model. Latency can be shortened through
further pruning and quantising. Again, it’s a balancing act between accuracy and speed.

As a minimum this involves bundling together the optimised model with the edge software stack.
Also, if the ability to update in the field is a requirement (which probably will), over the air (OTA)
updates must be enabled.

As mentioned, post-deployment considerations must be included as a part of the requirements
definition. These considerations include:

	o Edge systems must maintain reliable performance under varying environmental and network

conditions. In addition, the pipeline (from image capture through to inference) may need to

accommodate varying image quality (resolution, frame rates and encoding, etc).

	o Real-time monitoring, remote fault recovery and OTA updates are as critical as model optimisation.

	o For safety-critical applications, such as industrial monitoring or human-machine interaction,

model integrity, data security, and update traceability must be built into the system from the

start, as the information needs to be readily throughout the system’s life in the field.

Having trained and pruned the model it is now time to start preparing for edge hardware.
Quantisation converts the model developed on a desktop machine at floating-point 32-bit
resolution (FP32) to FP16, 8-bit integer (INT8) or another low-precision format. Quantisation-aware
training (QAT) helps preserve accuracy. Also, now is the time to match the quantisation format with
hardware support. For instance, Coral Edge TPU requires 8-bit quantised input tensors. The model
is converted to the supported format of the target platform: e.g. OpenVINO IR (for Intel-based edge
devices), TFLite (Android, Edge TPU), TensorRT (NVIDIA Jetson) or ONNX (cross-platform).

Return to Index ^^

When developing software for a vision-based AI at the edge system in addition to
understanding the functional requirements (objectives) it is important to appreciate
the underlying hardware as it will impose restrictions on the software stack.

08

Hardware Considerations

Let’s start by considering the top-level implications of using the different kinds of hardware. We will
look at each in detail shortly, but here is a brief comparison showing perhaps their main strengths
and weaknesses where vison-based AI at the edge is concerned.

Device Description Main Strength Main Weakness

Graphics Processing Unit
(GPU)

Neural Processing Unit
(NPU)

Central Processing Unit
(CPU)

Digital Signal Processor
(DSP)

Field-Programmable Gate
Array (FPGA)

Microprocessor Unit
(MPU)

A highly parallel processor
designed for rapid image
rendering and data-
intensive tasks like deep
learning.

A dedicated AI accelerator
optimised for executing
neural network operations
efficiently.

A general-purpose
processor capable of
handling diverse computing
tasks including control logic
and OS management.

Optimised for real-time
signal processing tasks
such as filtering, FFTs, and
low-level vision algorithms.

A reconfigurable
hardware device that
can be programmed to
implement custom logic
for specific tasks.

A general-purpose
processor used in
embedded systems
and capable of running
operating systems and
managing complex
applications.

Excellent parallel
processing power for large-
scale AI inference.

Great performance and
energy efficiency for deep
learning inference tasks.

Versatile and essential for
managing system-level
operations and pre/post-
processing in AI pipelines.

Efficient for low-latency,
real-time signal processing
with low power usage.

High flexibility and
parallelism tailored to
application-specific
acceleration.

Supports full operating
systems and multitasking
in moderately resource-
constrained environments.

High power consumption
and thermal output,
making it less ideal for low-
power edge environments.

Limited flexibility.
NPUs primarily support
specific AI workloads and
lack general-purpose
capabilities.

Poor parallelism and
slower performance on
deep learning workloads
compared to dedicated
accelerators.

Limited performance on
modern deep learning
models and complex vision
tasks.

Complex to program and
optimise, with longer
development cycles
compared to fixed-
function accelerators.

Lacks native AI
acceleration.

09

Above, only one strength and one weakness was shown for each type of hardware. The following
sections go into more detail, plus we discuss the software stacks, programming languages and
frameworks. Alternatively, you can skip these sections and go straight to Vision-Ready SOMs.

Device Description Main Strength Main Weakness

Microcontroller Unit
(MCU)

Tensor Processing Unit
(TPU)

A compact processor with
tightly integrated memory
and peripherals, designed
for simple control tasks in
embedded systems.

A specialised AI accelerator
developed by Google to
perform tensor operations
used in neural networks.

Ultra-low power
consumption and
simplicity for lightweight
edge devices.

High throughput and
energy efficiency for
running large neural
network inference
workloads.

Limited processing power
and memory for running
vision-based AI models.

Limited flexibility, with
support focused mainly on
TensorFlow and specific
model architectures.

Return to Index ^^

Vision-based AI at the edge relies heavily on deep neural networks, especially
convolutional CNNs, which require large amounts of matrix and vector
computations. GPUs lends themselves well to CNN tasks thanks to their massive
parallel processing capabilities.

GPU

Specifically, they have thousands of cores that can perform operations in parallel, accelerating
inference workloads significantly. This makes them ideal for handling the computational workload
of deep learning tasks.

GPUs exhibit low latency, low enough to support real-time inference and for processing high-
resolution video streams and are well supported by major AI frameworks (TensorFlow, PyTorch,
ONNx etc.) and many edge AI SDKs have optimised software stacks for GPU acceleration.

GPU Software Stack Strengths

GPU Software Stack Weaknesses

	o Optimised AI Frameworks. For example, TensorRT, cuDNN and DeepStream SDKs enable efficient

deployment of DNNs with quantisation, pruning and layer fusion.

	o Containerised Environments. Tools like Docker and NVIDIA NGC make it easy to deploy consistent

environments at the edge.

	o Hardware-Software Integration. Tight integration between hardware (Jetson Xavier, Orin, etc.)

and software (JetPack SDK) enables full utilisation of GPU capabilities.

	o Model Optimisation. Support for FP16/INT8 quantisation and pruning to improve performance

while reducing memory footprint.

	o Ecosystem and Community. Strong developer support, documentation, and ecosystem around

NVIDIA and CUDA-based stacks.

	o Portability Issues. Models optimised for GPUs (using TensorRT, CUDA) are often not portable

across non-NVIDIA hardware.

	o High Complexity. Full deployment pipelines (training, conversion, optimisation, deployment) are

complex and require specialised knowledge.

	o Limited Framework Support. Not all new model architectures are supported out of the box by

TensorRT or other GPU inference tools.

	o Integration Overhead. Integrating GPU inference into embedded systems may require custom

drivers, tuning and/or middleware.

10

GPU Programming Languages

Language Usage Pros Cons

CUDA
(C/C++)

Python
(via PyTorch, TensorFlow)

OpenCL
(C-based)

C++

Rust

Core language for
programming NVIDIA
GPUs.

High-level AI development.
GPU usage abstracted via
backends (CUDA/cuDNN).

Portable parallel
programming across
vendors (NVIDIA, AMD, Intel).

Often used for deploying
optimised applications
with TensorRT or OpenCV.

Emerging as an AI
language, and attractive
for applications where
there is a safety focus.

Full control over GPU
memory and kernels.
Maximum performance.

Easy and fast prototyping.
Large community and
support.

Cross-vendor compatibility.

High performance and
low-level control.

Comparable to C/C++ but
considered safer. Great
for low-latency, high-
throughput workloads.

Steep learning curve.
Vendor lock-in (NVIDIA
only). Complex debugging
and profiling.

Slower than C++ in real-
time inference. Less control
over low-level optimisation.

Less optimised than CUDA
on NVIDIA GPUs.

Verbose and requires more
development time than
Python.

Steep learning curve. Small
(but growing) ecosystem
and community.

11

Example Frameworks for Vision-Based AI at the Edge on GPUs

Framework Use Case Pros Cons

NVIDIA JetPack SDK

TensorRT

DeepStream SDK

ONNX Runtime (with
TensorRT backend)

PyTorch + TorchScript

OpenCV + CUDA Modules

TensorFlow Lite + GPU
Delegate

Full-stack edge AI on
Jetson.

High-performance
inference.

Video analytics at the edge.

Inference across devices.

Training and deployment.

Vision pre/post-processing.

Mobile and edge inference.

Optimised for Jetson.
Integrated CUDA/cuDNN/
TensorRT.

Fast inference. Supports
quantisation (INT8/FP16).
ONNX model import.

High throughput.
Optimised pipelines.
GStreamer integration.

Converts PyTorch/
TensorFlow models. Runs
on GPU (via TensorRT).

Easy to use. Export to
ONNX. GPU acceleration
via CUDA.

Real-time image
processing. Runs on GPU.

Small binary size. Cross
platform.

NVIDIA-only. Steep
learning curve.

Complicated API. NVIDIA-
only.

Complex configuration.
Limited flexibility.

Compatibility issues with
custom operations.

Slower than TensorRT.
More RAM needed.

Not AI-specific. Manual
optimisation needed.

GPU support weaker than
NVIDIA stack.

12

To accelerate the development of AI-enabled applications some GPU vendors offer a great deal of
support. Worthy of particular note is NVIDIA’s CUDA-X AI (see Figure 3), a complete deep learning
programming model and software stack for researchers and software developers to build high
performance GPU-accelerated applications for, amongst other things, computer vision.

Figure 3. Built on CUDA-X, NVIDIA’s unified programming model provides a way to develop deep learning applications on
the desktop or data centre, and deploy them to resource-constrained IoT devices. Source https://developer.nvidia.com/deep-
learning-software

Note:
Also worthy of note - but something the hardware team should already be aware of - is that not all GPUs include
dedicated hardware coders/decoders (CODECs). Most NVIDIA GPUs do: their CODECs are called NVENC and NVDEC).
If dedicated hardware CODECs are not present within the selected GPU this will impact the ability to record or stream
video directly from the device – e.g., inference plus digital video record (DVR) functions. The knock-on effect of poor
hardware choice can lead to increased latency, excessive CPU load and reduced power efficiency.

Return to Index ^^

NPUs are proving increasingly popular in vision-based AI at the edge
applications such as drones, autonomous vehicles and smart sensors. They are
optimised for matrix and tensor operations (core to neural networks) and boast
high throughput and low power consumption.

NPU

They are good at parallelism and can process multiple computations concurrently, which is vital for
CNNs. In addition, NPUs are low latency and can be used for real-time inference, essential for object
detection, face recognition and autonomous navigation, for example. They are energy efficient, too,
so are ideal if there is a tight power budget.

13

NPU Software Stack Strengths

NPU Software Stack Weaknesses

These include the fact that many NPUs come with optimised AI libraries - from vendors like
Qualcomm, Google, ARM and Intel, for instance – that provide pre-compiled operations, quantisation
tools and compilers to boost performance. Most NPUs also support popular ML frameworks and
software stacks often include tools for 8-bit or mixed-precision quantisation, pruning and layer
fusion.

These include a steep learning curve and the fact that SDKs and compilers are often vendor specific
(limiting portability). Also, debugging and profiling tools are not as mature as they are for CPUs and
GPUs. The issue to really watch out for though is that (bizarrely) not all neural network operations
are supported by NPUs - and CPUs often have to pick on tasks like dynamic flow control and
complex tensor operations, for instance. Accordingly, when looking for models to run on an NPU,
and the intended operations, it is important to confirm which layers are fully accelerated and which
revert to CPU execution. Workloads that require lots of back and forth between NPU and CPU will
compromise performance, particularly real time.

NPU Programming Languages

Language Pros Cons

Python

C/C++

Embedded C

OpenCL / CUDA

Vendor-specific DSLs / APIs
(e.g. Hexagon NN API [Qualcomm])

Easy to use, high-level and well-
supported.

Fast and close to hardware.

Minimal footprint. Tight control	 .

High performance, parallelism.

Direct control over NPU execution.

Not used directly on-device
(converted to lower-level formats).

Complex memory management and
harder to debug.

Very low-level and error prone.

Complex, not universal across all NPUs.

Non-portable across devices.
Steep learning curve and limited
community support.

14

Example Frameworks for Vision-Based AI at the Edge on NPUs

Framework Target NPUs Pros Cons

TensorFlow Lite

ONNX Runtime

OpenVINO

NVIDIA TensorRT (Jetson)

SNPE (Qualcomm)

MediaTek NeuroPilot

Many (e.g., Coral Edge TPU,
Android NNAPI).

Qualcomm SNPE, Intel
OpenVINO, Rockchip, etc.

Intel Myriad X.

NVIDIA NPUs (DLA), GPUs.

Hexagon DSP + NPU
(Snapdragon).

MediaTek NPUs.

Lightweight, TFLite models
can be accelerated via
NNAPI or vendor delegates.

Interoperable with many
frameworks as ONNX
exports from PyTorch/
TensorFlow.

Optimised for Intel
hardware and there is a
good computer vision
toolchain.

Extremely optimised.
Deep TensorFlow/PyTorch
support.

Tight integration with
Qualcomm chipsets and
efficient.

Integrates with Android
NNAPI and TensorFlow
Lite.

Limited flexibility, and
conversion is required.

NPU support often via
custom backends.

Intel-specific.

Not usable on non-NVIDIA
hardware.

Proprietary with limited
documentation.

Android-focused and there
is limited documentation
publicly available.

Return to Index ^^

Despite the rise of dedicated ICs that are geared for edge AI and especially
vision-based applications, CPUs remain very popular. They are available as
standalone devices (e.g. Intel Core i7, AMD EPYC) and are embedded into MPUs,
MCUs and system-on-chip (SoC) devices such as Apple M1 and Raspberry Pi
BCM2711.

CPU

CPUs handle general-purpose tasks well – offering a low/medium level of inference and pre-/
post-processing capabilities - and they are flexible with good support for frameworks, libraries
and languages. Not surprisingly, they have a very mature ecosystem with good compiler support,
toolchains, debugging tools, SDK availability and OS-level support (e.g., Linux and RTOS).

However, CPUs (even multicore devices) have limited parallelism compared to GPUs and FPGAs,
which limits throughput for deep learning inference. CPUs can also suffer from latency issues due
to non-deterministic scheduling, even if they are multicore devices. Real-time kernels should be
considered for time-critical inference.

CPU Software Stack Strengths

CPU Software Stack Weaknesses

	o Wide software support. Most AI/ML frameworks support CPU backends (TensorFlow, PyTorch,

OpenCV, ONNX, etc.).

	o Rich OS-level services. You can run full Linux distributions with networking, file systems, security, etc.

	o Optimisation toolchains. Compilers like LLVM, GCC and AI accelerators like OpenVINO (Intel) or

ARM Compute Library exist to optimise inference.

	o Less optimised for AI. Many AI frameworks prioritise GPU/NPU backends. CPU support is

improving, but still slower.

	o Software bloat. Full OS stacks can be heavyweight, which is not ideal for low-latency, real-time

use unless carefully trimmed.

	o Real-time constraints. Vanilla CPUs with general operating systems (e.g., Linux) aren’t real-time

unless customised (e.g., using PREEMPT_RT patches).

15

16

CPU Programming Languages

Language Pros Cons

C/C++

Python

Rust

Assembly

High performance, close to hardware
and widely supported.

Easy to read/write. Fast development.
Huge ML ecosystem (TensorFlow,
PyTorch).

Memory safety without garbage
collection. Good performance.
Increasingly popular for embedded.

Max control and efficiency.

Complex memory management,
slower development (potentially with
lots of bug hunting).

Slower execution. May need bindings
(e.g., with C++) for performance.

Steep learning curve. A small but
growing ecosystem.

Extremely low-level. Rarely used unless
optimising certain critical paths.

Example Frameworks for Vision-Based AI at the Edge on CPUs

Framework Language Pros Cons

OpenCV
(Vision processing library)

ONNX Runtime
(Inference engine for
ONNX models)

TensorFlow Lite
(Lightweight ML
framework)

ARM Compute Library
(Low-level optimised
routines for ARM CPUs)

PyTorch Mobile /
TorchScript
(ML frameworks)

Intel OpenVINO
Optimised inference toolkit
(Intel CPUs/VPUs)

C++ (bindings for Python,
Java, etc.)

C++, Python, C#

C++, Python

C++

C++, Python

C++, Python

Excellent for image pre/
post-processing. Widely
supported and lightweight.
Integrates with DNN
modules.

Lightweight and portable
across hardware.
Optimised CPU backends.
Supports quantised
models.

Optimised for mobile/edge.
Good CPU performance
with quantisation.

High performance on
ARM-based devices (e.g.,
Raspberry Pi). Optimised
convolution and maths
operations.

Easier for developers
already using PyTorch.
Scripted models can run
on CPU.

Highly optimised for
Intel CPUs. Post-training
quantisation, model
optimisation. Supports
OpenCV integration.

Direct DNN support
is basic (compared to
PyTorch/TensorFlow).
Performance depends
heavily on hardware
optimisation.

No training support
(inference-only). Requires
conversion from PyTorch/
TF to ONNX.

Conversion from full
TensorFlow model can be
tricky. Less transparent
debugging.

No high-level API (just
building blocks). Steeper
development effort.

Less optimised than TFLite
for small CPUs. Python
dependency unless fully
scripted.

Intel only, for best
performance. Steep
learning curve.

Return to Index ^^

These are also commonly used in vision-based AI at the edge applications. Their
strengths include low latency (making them suitable for real-time vision tasks)
and their on-chip memory and parallelism.

DSP

They are optimised for specific operations (such as convolution and FFT), making them very power
efficient and, as is implicit in the name, signal processing: because they have native instruction sets
for matrix and vector operations. This last aspect makes them good at filtering, image enhancement,
feature extraction and other key vision tasks.

DSPs are less general purpose than CPUs and GPUs, and deliver lower peak performance than the
latter, though that might only be an issue if the application has massively parallel workloads (such
as training a deep network). Also, DSPs in vision tasks depend on low-overhead transfer of data
between accelerators. Unless memory bandwidth and DMA are correctly configured, bottlenecks
might occur for some operations. Not surprisingly, as something of a specialist device, the DSP
developer ecosystem is smaller.

DSP Software Stack Strengths

DSP Software Stack Weaknesses

	o Highly Optimised Libraries. Vendors like Qualcomm, TI and Cadence provide optimised libraries

(e.g., Hexagon NN, TI Deep Learning [TIDL] and HiFi DSP SDK).

	o RTOS Integration. DSPs are often used with an RTOS, making them ideal for deterministic

applications.

	o Tight Integration with SoCs. DSPs are often embedded – along with CPUs, NPUs and image

signal processors (ISPs) - in heterogeneous SoCs, making cross-processing much easier via

vendor SDKs.

	o Proprietary Toolchains. Many DSPs require vendor-specific compilers and toolchains (e.g.,

Qualcomm’s Hexagon SDK, TI Code Composer Studio), which can be limiting.

	o Limited Framework Compatibility. TensorFlow Lite and ONNX often need custom conversion

paths to run on DSPs.

	o Manual Optimisation. Developers sometimes need to hand-optimise key routines using DSP

intrinsics or assembly.

	o Debugging is Harder. Debugging and profiling tools are less advanced compared to those for

CPUs and GPUs, for instance.

17

18

DSP Programming Languages

Language Pros Cons

C/C++

Python (via conversion)

Assembly (DSP-specific)

Widely supported, low-level control
and optimised libraries are available.

Used for model development.
Compatible with TensorFlow Lite or
ONNX

Maximum performance. Fine-grained
control.

Manual memory management.
Harder to debug.

Not used directly on the device.
Needs conversion to C/C++ or vendor
intermediate representation.

Tedious and error prone. Not
portable.

Example Frameworks for Vision-Based AI at the Edge on DSPs

Framework Vendor Pros Cons

Hexagon NN / SNPE

TIDL
(TI Deep Learning Library)

HiFi DSP SDK

TensorFlow Lite Micro

ONNX Runtime
(custom backends)

Qualcomm

Texas Instruments

Cadence

Various

Various

Optimised for AI on
Hexagon DSPs. Supports
TFLite and ONNX models.

Supports vision models.
Integrated with TI SoCs.

Audio and vision
optimised. Good for low-
power apps.

Open source. Can be
ported to DSPs.

Interoperable format.
Supports conversion
pipelines.

Proprietary. Limited
flexibility.

Complex build setup.
Limited model support.

Niche use cases. Requires
licensing.

Needs custom kernels.
Limited performance
without tuning.

Backend tuning is
required. Not always plug-
and-play.

Return to Index ^^

As mentioned, GPUs can perform thousands of operations in parallel and are
low latency (sufficiently low for real-time). FPGAs, which have configurable logic
blocks (see figure 4), tick these boxes too and are ideal for vision tasks such as
object detection, classification and segmentation (all of which often involve
parallel operations on pixels or regions).

FPGA

Unlike GPUs, which may have scheduling delays, FPGAs can not only deliver real-time performance,
but they are also deterministic, making them perfect for safety-critical applications. FPGAs can be
very energy efficient for certain workloads because they don’t carry general computing overhead.
Specifically, the internal hardware (logic gates and look up tables, LUTs) can be configured for the
dataflow of a neural network model, including optimised pipelines, quantisation and even pruned
models.

However, depending on the application, long-term maintainability may need to be factored in, and
may rule out the use of an FPGA. Specifically, whilst performance is deterministic, FPGAs might not
be the best solution if the application is to have frequent model updates.

DSP Software Stack Strengths

	o Highly Optimised Libraries. Vendors like Qualcomm, TI and Cadence provide optimised libraries

(e.g., Hexagon NN, TI Deep Learning [TIDL] and HiFi DSP SDK).

	o RTOS Integration. DSPs are often used with an RTOS, making them ideal for deterministic

applications.

	o Tight Integration with SoCs. DSPs are often embedded – along with CPUs, NPUs and image

signal processors (ISPs) - in heterogeneous SoCs, making cross-processing much easier via

vendor SDKs.

19

Figure 4. FPGAs contain configurable logic elements. Some also contain DSP blocks, useful for dot-product calculations (a
fundamental operation in linear algebra that is widely used in areas like ML and computer graphics). Source Edge AI + Vision
Alliance. https://www.edge-ai-vision.com/2016/08/fpgas-for-deep-learning-based-vision-processing/

DSP Software Stack Weaknesses

	o Proprietary Toolchains. Many DSPs require vendor-specific compilers and toolchains (e.g.,

Qualcomm’s Hexagon SDK, TI Code Composer Studio), which can be limiting.

	o Limited Framework Compatibility. TensorFlow Lite and ONNX often need custom conversion

paths to run on DSPs.

	o Manual Optimisation. Developers sometimes need to hand-optimise key routines using DSP

intrinsics or assembly.

	o Debugging is Harder. Debugging and profiling tools are less advanced compared to those for

CPUs and GPUs, for instance.

20

Example Frameworks for Vision-Based AI at the Edge on FPGAs

Framework Languages Pros Cons

OpenCL for FPGAs
(multiple vendors)

Xilinx Vitis AI
(for Xilinx FPGAs such as
Zynq and Versal)

Intel OpenVINO + FPGA
Plugin (for Intel FPGAs
such as Arria and Stratix)

OpenCL C (based on
C99 subset), C/C++ with
OpenCL API

Python (for API), C++, HLS,
VHDL

C++, OpenCL

Cross-platform (with
some caveats) and high-
level programming for
parallelism.

Pre-optimised Deep-
Learning Processing Unit
(DPU) for CNNs. Powerful
profiling tools.

Runs OpenVINO models
on FPGAs. Pre-compiled
bitstreams for some
networks. Easy deployment
from trained models.

Performance varies. Long
compile times. Less control
than HDL.

Steep learning curve for
full toolchain. Tied to Xilinx
hardware.

Less customisation of
hardware logic.

FPGA Programming Languages

Language Description Pros Cons

VHDL / Verilog

SystemVerilog

High-Level Synthesis (HLS)
(e.g., C/C++, OpenCL)

Python
(via tools like PYNQ)

Low-level Hardware
Description Languages
(HDLs).

Modern HDL with object-
oriented features.

C/C++ code compiled to
hardware logic.

Python wrapper for FPGA
APIs (mainly for Xilinx
boards).

Full control. Efficient/
mature toolchain.

Better modularity than
Verilog/VHDL.

Faster development. Easier
for software engineers.

Easy prototyping,
accessible.

Steep learning curve,
verbose and error prone.

Still requires deep
hardware knowledge.

Often less efficient than
handcrafted HDL.

Not for low-level hardware
development.

Return to Index ^^

Microprocessors are commonly used for vision-based AI at the edge due to their
balance of computational capability, flexibility and software support.

MPU

Relative to their cost, they offer great performance (especially devices with 32- or 64-bit cores such
as Arm Cortex-A) compared to CPUs. They also support Linux-based OSes (e.g., Yocto Linux and
Ubuntu Core), which enable complex software stacks, computer vision libraries, and frameworks
like OpenCV and TensorFlow Lite. In addition, many modern MPUs integrate AI/ML accelerators or
GPU/ISP blocks to handle intensive computer vision workloads.

Understandably, as such a popular embedded system device, MPUs typically have interfaces
for camera inputs (MIPI-CSI) that are crucial for vision systems. And many MPUs have real-time
capabilities for latency-sensitive vision tasks. However, when several cameras are connected, the
MPU’s internal bus and memory architecture needs to be able to sustain the combined throughput
without frame drops or inference lag.

MPU Software Stack Strengths

MPU Software Stack Weaknesses

	o Rich OS environment: Linux on MPUs enables multitasking, multi-threading, containerisation

(e.g., Docker), and access to well-established software ecosystems.

	o Broad AI framework support: TensorFlow Lite, ONNX Runtime, PyTorch (limited), and OpenCV

are natively supported or easily cross-compiled.

	o Custom ML model deployment: MPUs often support tools for quantisation, pruning, and cross-

compilation of neural networks to run efficiently on-device.

	o Good community and vendor support, especially for the most popular MPU devices.

	o Complex development: Building software for MPUs involves cross-compiling and managing

dependencies.

	o Latency and power: While better than cloud, MPUs are not always optimal for real-time, ultra-

low-latency vision (a GPU or FPGAs might be better).

	o Software fragmentation: Different vendors have different SDKs and toolchains (e.g., NXP’s eIQ

and TI’s Edge AI SDK), which can cause portability issues.

	o Security patching and updates: If the OS is embedded Linux, keeping it secure and up-t-date is

non-trivial, especially in long-lifecycle devices.

21

22

MPU Programming Languages

Example Frameworks for Vision-Based AI at the Edge on MPUs

Framework Use case Pros Cons

OpenCV

TensorFlow Lite

ONNX Runtime

GStreamer

Vendor SDKs (e.g., NXP eIQ,
TI EdgeAI)

Computer vision and
image processing.

ML inference.

Inference with various
backends.

Video pipeline
management.

HW-specific acceleration.

Open source and well-
documented.

Optimised for edge,
supports quantisation.

Interoperability across
frameworks.

Efficient streaming,
integration with OpenCV.

Uses built-in accelerators,
optimised.

Can be heavy on the MPU’s
CPU.

Limited model support
compared to full
TensorFlow.

Less optimised for all
hardware.

Complex to configure.

Vendor lock-in. Steep
learning curve.

Language Use case Pros Cons

C/C++

Python

Shell scripts (Bash)

Rust

Drivers, real-time
components, OpenCV,
GStreamer.

Rapid prototyping, AI
frameworks (TensorFlow
Lite, PyTorch), OpenCV
scripting.

System-level automation,
startup scripts.

Safe systems
programming.

Fast, good hardware
control, widespread.

Easy syntax, strong AI
ecosystem.

Lightweight, integrated
into Linux.

Memory safety,
performance.

Error prone. Not necessarily
the safest language to use.

Slower and needs Python
runtime.

Not suitable for complex
logic

Smaller ecosystem,
learning curve.

Return to Index ^^

Microcontrollers are increasingly being used for vision-based AI at the edge
due to their low power consumption, small footprint, and increasingly capable
hardware (which offers real-time responses).

MCU

However, they have limited compute power - so the inference must be highly optimised – and
limited RAM and Flash memory, limiting model size, input resolution and image buffers. MCUs can
also suffer limited I/O bandwidth.

Despite these limitations, MCUs are still capable of being used in basic vision-based AI at the edge
applications such as object recognition, gesture recognition, bar code / QR code reading, and
industrial monitoring (e.g. defect detection).

MCU Software Stack Strengths

MCU Software Stack Weaknesses

	o Deterministic behaviour thanks to minimal software layers.

	o Using an RTOS or going bare metal gives fine-grained control over scheduling and power

management.

	o This is low-level development work that requires in-depth knowledge of hardware (e.g. register-

level programming, direct memory access [DMA] and interrupts).

	o The stack needs to be optimised by hand for core functions such as single instruction, multiple

data (SIMD).

	o Limited framework support, compared to Linux or Android environments, and therefore less

compatibility with mainstream AI/ML frameworks.

23

Note:
MCU-based systems should have lightweight update mechanisms and memory-efficient model deployment to allow
field maintenance.

24

MCU Programming Languages

Language Pros Cons

C

C++

MicroPython / CircuitPython

Rust

Extremely efficient (in terms of
performance versus memory),
ubiquitous in embedded
environments, full control of memory
and hardware.

Adds object oriented, templates, and
some abstraction over C. Still highly
efficient.

Much easier and faster for
prototyping.

Memory safety without garbage
collection. High performance with
modern tooling.

Verbose and error prone (memory
safety, buffer overflows). Poor
abstraction for complex AI logic.

Feature-heavy (template
metaprogramming, RTTI) can bloat
code if not used carefully. Limited
library ecosystem compared to
desktop/server C++.

High memory overhead. Very limited
support for AI inference on vision
data.

Steep learning curve. Toolchain and
ecosystem for embedded are still
maturing.

Example Frameworks for Vision-Based AI at the Edge on MCUs

Language Pros

TensorFlow Lite for Microcontrollers
(TFLM)

CMSIS-NN (Arm Cortex-M CPUs)

Edge Impulse

NNoM

Designed specifically for MCUs (no
dynamic memory allocation), good
support for quantised models (INT8)
and good community support.

Highly optimised NN kernels for Arm
Cortex-M. Works well with TFLM for
efficient inference.

Web-based platform for data
collection, training, and deployment
to MCUs. Supports TFLM backend.
Great for rapid prototyping and
deployment

Lightweight NN inference library for
MCUs. Fully written in C.

Limited operator support (e.g.,
no support for large or complex
layers), it lacks model training
(must use pre-trained models from
TensorFlow), and model conversion
and optimisation can be tricky.

Only provides kernels (no model
compiler or graph representation),
low-level and harder to use alone.

Less flexible for custom models.
Requires cloud platform for training.
Not ideal for full control or proprietary
pipelines.

Not widely adopted. Less community
support and documentation.

Return to Index ^^

Tensor Processing Units are specialised hardware accelerators designed by
Google primarily for accelerating machine learning workloads, particularly
those involving neural networks. In the context of vision-based AI at the edge,
TPUs are increasingly used because they offer a unique mix of power efficiency,
speed, and parallelism: which is critical when deploying AI models in edge
devices like cameras, drones, smartphones and IoT systems.

TPU

TPUs are optimised for the kinds of matrix operations that dominate vision tasks (e.g., convolutions
in CNNs). Also, dedicated edge TPUs (e.g., Google’s Coral TPU) are specifically designed for low-
latency inference on small, efficient models like MobileNet.

They can be embedded into tiny systems (e.g., Coral USB Accelerator) - making them ideal for
compact edge devices - and are particularly fast when working with 8-bit quantised models, which
are common in edge deployments to reduce memory and improve inference speed.

25

TPU Software Stack Strengths

TPU Software Stack Weaknesses

Edge TPUs are tightly integrated with TensorFlow Lite, Google’s lightweight framework for mobile
and embedded devices, and optimised TFLite models can be compiled directly using the Edge TPU
Compiler. Full support and documentation from Google make the development process smoother
if you stay within their toolchain, and integration with other Google tools (e.g., Colab and Cloud AI)
is seamless.

Because TPUs are optimised for specific workloads and operations, custom layers or complex
architectures not supported (by the TPU) will need to be performed by a CPU or MPU, for example.
Edge TPUs only support a subset of TensorFlow operations. Also, only quantised (INT8) models
are supported, so additional steps like post-training quantisation or QAT, which can be complex,
are required. Precision loss from quantisation can degrade accuracy if not handled carefully.
Understandably, the software stack (Edge TPU Compiler, runtime, etc.) is tightly controlled by
Google, and there is less community-driven support compared to more open platforms (e.g., NVIDIA
Jetson with PyTorch).

TPU Programming Languages

Language Usage Pros Cons

Python

C++

Shell (CLI)

Main language for
model development and
deployment.

Used for custom
applications using TFLite
C++ APIs.

For compiling models with
Edge TPU Compiler.

Easy to use. Supported by
TensorFlow, TFLite, and
Edge TPU runtime.

High performance, low
overhead.

Quick integration into
deployment pipeline.

Less efficient for low-level
operations.

Steeper learning curve;
more boilerplate.

Minimal logic possible.

26

Example Frameworks for Vision-Based AI at the Edge on TPUs

Framework Usage Pros Cons

TensorFlow +
TensorFlow Lite

PyTorch
(via ONNX → TFLite)

Edge TPU Runtime

Primary framework for
training and deploying
models to TPUs.

Possible via conversion to
TFLite.

Required to execute
models on Edge TPU.

Excellent support (end-to-
end flow) with good tools
for quantization and model
optimisation.

Familiar syntax and a
strong community.

Fast and optimised.

Steep learning curve.

Conversion to TFLite may
break some operations,
and quantisation not as
mature.

Supports only a limited set
of models and operations.

Return to Index ^^

Having discussed the above core hardware technologies let’s consider commercially
available vision system on modules (vision-SOMs) that lend themselves well to
developing AI-enabled applications. Figure 5 shows an example.

Vision-Ready SOMs

The advantages of using a vision-ready SOM include:

	o Lower risk. Developing custom hardware comes with significant risk such as hardware bugs,

power and thermal management issues and potential manufacturing defects. Also, the extent of

its compatibility with other systems might not be known until it is in the field. SOMs on the other

hand are field proven, tested for stability and often supported by their OEMs or third parties.

	o Reduced development time. SOMs come pre-designed with a working processing ‘engine’ (be

it a GPU, MPU, DSP etc.), memory (RAM and ROM) and I/O interfaces. This removes the need

to design and test complex hardware subsystems, allowing the project to focus on software

development and system integration. Vision-SOMs provide even more - specifically dedicated

pre-integrated camera interfaces (such as MIPI CSI or parallel interfaces) - reducing design effort

even further.

	o Reduced certification burden. SOMs often carry regulatory pre-certifications (e.g., FCC, CE),

reducing the burden on your own product certification process. This is especially advantageous

for wireless-enabled modules or medical/industrial systems.

	o Ecosystem and community support. Popular SOMs have active communities and support

channels, which speeds up troubleshooting and provides access to tutorials, libraries and

example code.

	o Integrated AI acceleration for real-time inference. Many vision-SOMs (e.g., NVIDIA Jetson, Google

Coral, NXP i.MX 8M Plus SOMs) include AI/ML hardware accelerators for the core processing

engine (again, GPU, NPU or DSP, for example).

	o Stack availability. Vision SOMs typically include or support Linux distributions (Yocto, Ubuntu,

etc.), AI SDKs (TensorRT, OpenCV, GStreamer, etc.) and pre-built drivers for vision peripherals. This

dramatically lowers software integration effort, especially for camera and sensor support.

27

Figure 5. Machine vision requires embedded systems that can analyse data on the spot and offer configurable sensor
capabilities. SOMs enable developers to take advantage of machine vision at scale while keeping costs low.
Source AMD: https://www.amd.com/en/products/system-on-modules/what-is-a-som.html

A word of warning: SOM availability changes fast as, understandably, new products are being
launched to serve the growing market that is AI at the edge. Accordingly, developers must check
module lifecycles before anything is finalised.

Also, be mindful of the fact that SOM manufacturers vary massively in SDK and OS update schedules.
If the system you are developing will be deployed for a few years you need to be confident that there
will be long-term support for kernels and drivers. And it is recommended that your organisation/
team sets reminders to check if (or rather when) support will end.

	o Modularity and scalability. SOMs can be easily upgraded (e.g., moving from a Jetson Nano to a

Jetson Xavier) while keeping the same baseboard. This allows for products to be scaled/upgraded

with minimal redesign effort but be mindful of starting off with too little or too much scope for

expansion. Also, you will of course be tied to the SOM’s physical spec (including interfaces).

	o Cost-effective for low- to mid-volumes. Vision-SOMs are very cost-effective at prototype and

production volumes under 10k units, where NRE costs of a custom PCB would be prohibitive.

28

A step beyond using a vison-ready SOM is to use an industrial / edge AI platform.
The main advantage of doing so is that you start your project with a turnkey
solution: a validated hardware / software environment that drastically shortens
development time, improves reliability and performance for real-time vision at
the edge. Integration risk is lowered too.

Vison-Ready AI Computing Platform:
An Example

So, what might a platform comprise? To best answer that, let’s consider an example: Innodisk’s
APEX-X100 (see Figure 6). It is offered with an NVIDIA RTX 6000 Ada accelerator (18,176 CUDA cores,
568 Tensor cores, 142 RT cores; 48GB GDDR6) which gives large inference/fine-tuning headroom for
modern vision models and multimodal workloads. That’s useful when you need high throughput
(multi-camera) or want to run larger models locally.

The APEX-X100 also comes with Intel 13th-Gen Core i7 or i9 options, up to 128GB (or more in some
variants) of DDR5 and 512GB–1TB (or higher) NVMe pre-installed, all of which is ideal for preprocessing,
batching and running auxiliary services.

29

Figure 6. The APEX-X100 is an industrial / edge AI computing platform designed to support demanding vision and compute
heavy workloads such as local model training, inference and fine tuning. 1 = the compute hardware. 2 = a DRAM module that
supports up to four Innodisk DDR5 4400 UDIMM modules. 3 = Flash storage (featuring an Innodisk industrial-grade M.2 4TG2-P
512GB SSD with a PCIe Gen 4 x4 interface). 4 =an out-of-band remote management module. 5 = I/O ports (specifically three
2.5Gbps LANs, a 10Gbps LAN, multiple high speed USB ports and various COM/DIO ports).
Source Innodisk. https://www.innodisk.com/en/edge-ai-systems/nvidia-solution/apex-x100

Model Selection, Deployment and Optimisation

Model Selection, Deployment and Optimisation

Model Selection, Deployment and Optimisation

In terms of how the APEX-X100 might be used by software developers:

	o Models can be selected that take advantage of the GPU /Tensor cores. Example models include

YOLO (v7/v8), Faster R CNN and Mask R CNN.

	o Use frameworks and inference acceleration libraries such as NVIDIA’s TensorRT, ONNX Runtime

with CUDA, cuDNN; possibly even model quantisation / pruning for faster inference.

	o For fine tuning / training, you can ensure the model fits within the GPU memory.

	o Camera ingress. You’ll need to connect cameras / vision sensors. The APEX X100 offers many

I/O options (USB, 10/2.5 GbE, etc). If you use MIPI or GMSL cameras, you might need additional

capture hardware or interface boards.

	o Storage and data pipeline. Real time vision yields large amounts of data. Fast NVMe for buffering

or storing images/videos. Possibly RAID or external storage for archiving. Tip: use SSDs with

industrial grade durability for reliability.

	o Networking / communication. Streaming video or sending inference results over a network

requires high bandwidth (10 Gbps or multiple 2.5 Gbps links) and reliable network stack. Edge

deployment may require remote management and monitoring (the APEX X100’s OOB helps in

this respect).

	o OS / runtime environment. Your application could run on Windows IoT / Windows Server but

many vision/AI frameworks run better on Linux (e.g. PyTorch, TensorFlow, OpenCV, etc.) or

containers (which better support portability).

	o Inference / training pipeline. This is from data ingestion (from cameras) through to pre-processing

(resizing, normalisation), batch or streaming inference, post processing, and visualisation and/or

alerting.

	o Edge/cloud syncing. If data logging or model retraining happens centrally, you may need to

sync data/models with the cloud or central servers. APEX X100 could act as a node in a larger

distributed system.

	o Security and maintenance. You need secure boot, OS updates, encrypted storage and be sure to

safe firmware/drivers. The remote / OOB management will help with maintaining and monitoring

health (especially if deployed in remote / harsh environments). Note: the OOB management

should be integrated into software workflows for monitoring and recovery, and not just hardware-

level control. Indeed, hardware-level control might not even be possible for some devices that

communicate over wired protocols such as Ethernet.

Tip
You should use the exact same number and types of cameras that will be used in the field, as the use of multiple high
bandwidth cameras will directly impact disk I/O and buffering.

30

Return to Index ^^

When selecting a camera for a vision-based AI at the edge application, there
are several critical factors to consider, and decisions made early on in the flow
will have direct implications on ease of integration, system performance, power
consumption and, ultimately, the success of the project.

Cameras

Making those decisions is a system-level one and software engineers must be included to ensure
the chosen camera does not become a bottleneck during development or deployment. Also, in the
list that follows, not all points raised are of direct relevance to the project’s software engineers, but
we share them on the premise that there is no harm in raising awareness and presenting a broader
picture.

What to look for and why

	o Resolution. Higher resolution means more detail but also more data to process, so choose a

resolution that matches the needs of your AI model (e.g., object detection may need less detail

than facial recognition).

	o Frame Rate (FPS). Real-time applications (e.g., robotics, surveillance) may require 30 FPS or higher

whereas slower frame rates might suffice for static or periodic tasks (e.g., industrial inspection).

	o Frame Synchronisation and Spatial Calibration. These are vital for accurate detection/tracking in

multi-camera system.

	o Interface and Connectivity. Options include USB, MIPI CSI and Ethernet - but the choice may be

driven by the edge hardware - and you should consider bandwidth and driver support.

	o Sensor Type. CMOS is the most common type as it is faster and more power-efficient than CCD.

As for colour (RGB) vs monochrome, the latter performs better in low light and offers higher

contrast for certain AI tasks.

	o Lens and Field of View (FoV). Understandably, wide-angle is best for monitoring or tracking and

narrow FoV is better for detail or distance work. Subject variability will govern whether you opt

for fixed- or auto-focus. Note: Camera housings and mounting should also be evaluated for the

deployment environment.

	o Lighting Conditions. These will drive the camera’s requirements in terms of low-light sensitivity,

IR capability (for night vision) or HDR support for high-contrast scenes. Also, some edge cameras

support global shutter for fast-moving objects.

	o Driver and Software Support. Check the availability of drivers for your edge platform (Linux,

Android, etc.) as well as support for GStreamer, OpenCV and AI SDKs (NVIDIA Jetson, OpenVINO,

etc.), for example.

31

The inclusion of software engineers in camera selection is a must. It ensures the selected camera
interfaces properly with the platform, AI frameworks (e.g., TensorFlow Lite, PyTorch), and drivers. Also,
the camera’s output directly affects inference performance and memory usage, and when it comes
to prototyping it will be the software engineers that will be largely responsible for investigating any
frame drops, latency issues or poor image quality.

In terms of ensuring maintainability, there is a strong argument for standardised camera modules
(an example of which is shown in Figure 7).

Camera selection

32

Figure 7. Above, Innodisk’s EV8U-LSM-RLCF is a USB 2.0 8MP resolution, 30fps fixed focus camera module with OS support for
Windows, Linux and Android. It can be used in low light conditions thanks to an integrated image signal processor (ISP)
Source: https://www.innodisk.com/en/products/camera/usb-20/ev8u-lsm1-rlcf

Return to Index ^^

33

Whilst we extolled the benefits of going down the SOM or vision-ready AI
platform route, customisation almost always becomes necessary to align
the hardware, software, and deployment environment with the specific
requirements of your use case. Most if not all of the customisation you
will be doing yourself, so please note the following...

Customisation

Pitfalls to avoid:

	o Underestimating Integration Complexity. Hardware and software stacks (e.g., camera SDKs

+ inference runtime) can conflict. Also, while early proof-of-concept systems may work fine,

scaling to production often exposes bottlenecks (which is why, above, we recommend using end

application cameras in their intended quantities).

	o Thermal or Power Issues. Many teams forget to test under sustained load, causing throttling or

brownouts.

	o Portability. Choosing accelerators or SDKs with limited cross-platform support can trap you.

Ensure your models and code are portable.

	o Insufficient Lifecycle Planning. Industrial deployments often need 5–10 years of component

availability and sectors such as medical, possibly longer. Pick components (storage, GPU, NIC)

with known lifecycle commitments. Note, Innodisk has an excellent reputation in this respect,

and it certainly an area in which Simms offers value (see later).

	o Overlooking Maintenance and Updates. Again, we have already mentioned that the first day of

deployment is just the start on the vision-based, AI-enabled system’s life at the edge. Devices

need secure, remote OTA updates. Overlooking this will almost certainly lead to operational pain

later.

	o Poor Dataset Fit. Again, when we discussed the flow, we stressed that edge environments can

differ in lighting, motion blur, or camera angles. You may need to use custom datasets and on-

site fine-tuning to assure robust performance.

However, even if your team has good, all-round engineering and AI/ML skills, outsourcing some
parts of the customisation often makes sense. Reasons include faster time to market; help with
meeting regulatory and reliability compliance requirements; increasing your confidence in your
ability to assure your customers that lifecycle management and long-term support are available;
and help with ruggedising your system for life in a harsh environment (for example, SSD endurance
through power-loss protection).

34

Where Innodisk adds value:

	o Hardware and Firmware Co-Design. Deep control of SSD firmware, DRAM validation, and industrial

motherboards. Innodisk can optimise I/O throughput and storage performance specifically for

your AI vision workload. The OEM can also personalise your system’s BIOs for unique usage and

increase system efficiency.

	o Vision-Ready Platform Experience (APEX Series). Already integrated with NVIDIA/Qualcomm

accelerators, so custom thermal and power tuning is streamlined. Ready for industrial edge

environments — rugged, compact, and stable.

	o Turnkey Integration and Validation. Innodisk can test your AI model on their hardware, check

compatibility, and ensure long-term stability.

	o Lifecycle and Supply Chain Stability. As an industrial supplier, Innodisk manages long-term

availability and batch consistency, unlike vendors largely focussed on supplying consumer

hardware.

Return to Index ^^

35

We can help accelerate your vision-based AI at the Edge project

Why Simms?

In this white paper we have provided a wealth of information - not only offering advice but also
warning of pitfalls – to help you fasttrack the development of your project. Further acceleration can
be achieved through establishing good relationships with key suppliers, particularly distributors that
not only provide good technical support themselves but also have direct access to the specialists
within the OEM organisations they represent.

If you are developing a vision-based AI at the edge system around a core processing device (and we
have discussed many types in this white paper) you will also need industrial-grade memory (RAM
and NVM) and embedded peripherals, cameras as a minimum. You will probably need SDKs and
prototyping boards too.

Alternatively, and as stressed above, vison-ready SOMs and AI computing platforms boast many
benefits, not the least of which is a shorter time to market. It is essential to select the most
appropriate SOM or platform for not only your immediate project but also your long-term objectives:
for example, IP re-use on subsequent projects. And as emphasised throughout this paper, if the
underlying hardware wrong (incorrectly selected), many software-controlled functions might be
constrained, and overall performance compromised.

Simms can help you make the right choices and supply the hardware plus any support you need
to accelerate your project. Indeed, the company brings deep technical expertise, helping you align
your software architecture and performance goals with the optimal hardware configuration.

As a specialist distributor, Simms bridges the gap between developers, system architects and world-
leading manufacturers such as Innodisk. The company connects software innovators (like you)
who are building vision-based AI at the edge with the hardware platforms that make their vision a
reality; thus helping them move as fast as possible from concept to deployment: with solutions that
are reliable, scalable and ready for industrial environments.

Importantly, Simms works collaboratively and in a structured flow, that begins with developing a
clear understanding of the application and workload. From there, Simms matches the intended
software environment (including models) to the most suitable compute, memory, and storage
technologies to accelerate development and de-risk deployment.

In essence, Simms is far more than a distributor. When you engage with the company you benefit
from a sound bridge between intelligent software and industrial-grade hardware, backed by long-
standing vendor relationships and decades of embedded experience.

Return to Index ^^

36

Selecting the right compute module is only one
part of delivering a robust vision-AI edge system.

Our partner Innodisk

Real-world deployments depend heavily on how well the surrounding hardware performs over
time: the endurance of storage under constant data ingest, the stability of DRAM under sustained
inference loads, the consistency of component behaviour across production batches and the ease
with which devices can be maintained in the field. This is where Innodisk excels.

Unlike consumer or enterprise SSD vendors, Innodisk engineers the firmware, NAND selection, and
controller behaviour around the realities of edge vision systems. Models are cached and updated
frequently; cameras continuously generate high-write workloads; local logs accumulate; inference
pipelines generate random access patterns. Innodisk SSDs are optimised for these patterns and
incorporate features such as power-loss protection, advanced wear-levelling and configurable over-
provisioning, ensuring inference pipelines remain stable as systems age.

AI inference on GPUs, NPUs or accelerators often exposes weak points in memory design—
temperature drift, timing errors, or unpredictable throttle events. Innodisk’s industrial DRAM
modules are validated in wide operating temperature ranges and under non-stop load conditions,
reducing the “silent” instability issues that can derail edge AI projects and are notoriously difficult
to diagnose at the application layer.

Innodisk’s APEX series represents a step beyond discrete memory and storage. These platforms
give development teams a pre-validated environment where GPU acceleration, DDR5 capacity,
PCIe storage, cooling, and remote management have already been engineered to work together.
This avoids the integration trap many teams face - where individually excellent components
underperform when put into a 24/7, multi-camera deployment.

Edge AI systems often operate in locations that are inaccessible or mission critical. Innodisk’s out-of-
band management modules allow devices to be recovered, updated, or re-imaged without OS-level
access. Combined with long-term component availability and strict batch-to-batch consistency, this
gives engineering teams confidence that prototypes will behave the same as production hardware,
and that deployed units will remain supportable years later.

Through our relationship with Innodisk, Simms can bring you into direct contact with their
engineering teams. This includes firmware tuning for endurance profiles, pre-deployment validation
of your AI workloads, platform-level customisation, and lifecycle planning. Rather than selecting
memory or compute in isolation, we help you align the behaviour of your models, data ingestion
pipeline and system architecture with the exact hardware that will support it for the duration of its
life in the field.

Industrial Memory for AI Workloads

Validated DRAM for Sustained Compute

Vision-Ready Platforms, Not Just Components

Deployment, Recovery and Lifecycle

Simms + Innodisk = Faster, Safer Deployment

Return to Index ^^

This white paper was written by Simms technical specialists.

37

There is a growing demand for vision-based AI at the edge system in virtually
every industry sector. In developing those systems, software engineers face
many challenges that can be made all the more difficult by the underlying
hardware.

Summary

Its strengths and weakness in relation to the software stack must be fully appreciated; and software
engineers must be involved in hardware selection if the project is to run on time and risks reduced.

In terms of fast tracking (and further reducing risk) SOMs and AI-ready platforms offer a compelling
abstraction layer between AI software and edge hardware, allowing software developers to focus on
high-level optimisation. Indeed, by leveraging SOMs / AI-ready platforms with built-in support for
neural accelerators, vision pipelines and robust SDKs, teams can prototype rapidly, scale efficiently
and deploy confidently in the field.

Lastly, do not overlook the considerable role the distributor of the underlying hardware can play in
accelerating your project. They can help with hardware selection, and they have direct contact with
the OEMs, who in turn can assist and even customise solutions for you.

About the Authors

Return to Index ^^

A global industry partnership (100+ member companies) focused on edge AI + computer vision.
Supports product creators, offers education, market/technology-trends insight, and addresses
“bringing vision + AI to products” challenges.

A foundation dedicated to edge AI (including tinyML, embedded systems) covering hardware,
software, ecosystems, and deployment. Good fit when discussing “AI-ready modules” and
ecosystems.

NVIDIA Jetson (Nano, Xavier, Orin series):

Google Coral (Edge TPU SOMs):

NXP i.MX 8M Plus SOMs (Toradex, Variscite, TechNexion, etc.):

Raspberry Pi Compute Module (CM4/CM5) (often used for lightweight vision applications):

NVIDIA Developer Forums (Jetson Subforum)

Coral Community Forum

NXP Community (MCU & i.MX forums)

Raspberry Pi Forums

Variscite Forums and Wiki

JetsonHacks

GitHub: Coral Dev Board / Edge TPU Examples

Toradex Developer Center

TechNexion Community

GitHub Projects

	o www.edge-ai-vision.com

	o www.edgeaifoundation.org

	o forums.developer.nvidia.com/c/jetson-embedded-systems/70

	o www.coral.ai/community/

	o community.nxp.com

	o forums.raspberrypi.com

	o www.variwiki.com

	o www.jetsonhacks.com

	o www.github.com/google-coral

	o developer.toradex.com

	o www.technexion.com

	o www.github.com/dusty-nv/jetson-inference

38

Useful Links

Edge AI + Vision Alliance.

EDGE AI Foundation.

SOM community and support resources:

Return to Index ^^

https://www.edge-ai-vision.com
https://www.edgeaifoundation.org
https://forums.developer.nvidia.com/c/jetson-embedded-systems/70
https://developers.google.com/coral
https://community.nxp.com
https://forums.raspberrypi.com
https://www.variwiki.com
https://www.jetsonhacks.com
https://www.github.com/google-coral
https://developer.toradex.com
https://www.technexion.com
https://www.github.com/dusty-nv/jetson-inference

01622 852800
www.simms.co.uk/intelligent-solutions
sales@simms.co.uk

Simms International
Northdown Close
Northdown Business Park
Ashford Road
Lenham
Kent
ME17 2DL

Get in touch

	1. Executive Summary

